Algorithm-WordLevelStatistics

 view release on metacpan or  search on metacpan

t/Relativity.test  view on Meta::CPAN

It is not difficult to understand why, in spite of this, we feel
constrained to call the propositions of geometry "true." Geometrical
ideas correspond to more or less exact objects in nature, and these
last are undoubtedly the exclusive cause of the genesis of those
ideas. Geometry ought to refrain from such a course, in order to give
to its structure the largest possible logical unity. The practice, for
example, of seeing in a "distance" two marked positions on a
practically rigid body is something which is lodged deeply in our
habit of thought. We are accustomed further to regard three points as
being situated on a straight line, if their apparent positions can be
made to coincide for observation with one eye, under suitable choice
of our place of observation.

If, in pursuance of our habit of thought, we now supplement the
propositions of Euclidean geometry by the single proposition that two
points on a practically rigid body always correspond to the same
distance (line-interval), independently of any changes in position to
which we may subject the body, the propositions of Euclidean geometry
then resolve themselves into propositions on the possible relative
position of practically rigid bodies.* Geometry which has been
supplemented in this way is then to be treated as a branch of physics.

t/Relativity.test  view on Meta::CPAN

we require a " distance " (rod S) which is to be used once and for
all, and which we employ as a standard measure. If, now, A and B are
two points on a rigid body, we can construct the line joining them
according to the rules of geometry ; then, starting from A, we can
mark off the distance S time after time until we reach B. The number
of these operations required is the numerical measure of the distance
AB. This is the basis of all measurement of length. *

Every description of the scene of an event or of the position of an
object in space is based on the specification of the point on a rigid
body (body of reference) with which that event or object coincides.
This applies not only to scientific description, but also to everyday
life. If I analyse the place specification " Times Square, New York,"
**A I arrive at the following result. The earth is the rigid body
to which the specification of place refers; " Times Square, New York,"
is a well-defined point, to which a name has been assigned, and with
which the event coincides in space.**B

This primitive method of place specification deals only with places on
the surface of rigid bodies, and is dependent on the existence of
points on this surface which are distinguishable from each other. But
we can free ourselves from both of these limitations without altering
the nature of our specification of position. If, for instance, a cloud
is hovering over Times Square, then we can determine its position
relative to the surface of the earth by erecting a pole
perpendicularly on the Square, so that it reaches the cloud. The
length of the pole measured with the standard measuring-rod, combined

t/Relativity.test  view on Meta::CPAN

the use of divided measuring-rods, the introduction of which does not
demand any fundamentally new method.

**A Einstein used "Potsdamer Platz, Berlin" in the original text.
In the authorised translation this was supplemented with "Tranfalgar
Square, London". We have changed this to "Times Square, New York", as
this is the most well known/identifiable location to English speakers
in the present day. [Note by the janitor.]

**B It is not necessary here to investigate further the significance
of the expression "coincidence in space." This conception is
sufficiently obvious to ensure that differences of opinion are
scarcely likely to arise as to its applicability in practice.

*** A refinement and modification of these views does not become
necessary until we come to deal with the general theory of relativity,
treated in the second part of this book.



SPACE AND TIME IN CLASSICAL MECHANICS


The purpose of mechanics is to describe how bodies change their
position in space with "time." I should load my conscience with grave
sins against the sacred spirit of lucidity were I to formulate the
aims of mechanics in this way, without serious reflection and detailed
explanations. Let us proceed to disclose these sins.

It is not clear what is to be understood here by "position" and
"space." I stand at the window of a railway carriage which is
travelling uniformly, and drop a stone on the embankment, without
throwing it. Then, disregarding the influence of the air resistance, I
see the stone descend in a straight line. A pedestrian who observes
the misdeed from the footpath notices that the stone falls to earth in
a parabolic curve. I now ask: Do the "positions" traversed by the

t/Relativity.test  view on Meta::CPAN




ON THE IDEA OF TIME IN PHYSICS


Lightning has struck the rails on our railway embankment at two places
A and B far distant from each other. I make the additional assertion
that these two lightning flashes occurred simultaneously. If I ask you
whether there is sense in this statement, you will answer my question
with a decided "Yes." But if I now approach you with the request to
explain to me the sense of the statement more precisely, you find
after some consideration that the answer to this question is not so
easy as it appears at first sight.

After some time perhaps the following answer would occur to you: "The
significance of the statement is clear in itself and needs no further
explanation; of course it would require some consideration if I were
to be commissioned to determine by observations whether in the actual
case the two events took place simultaneously or not." I cannot be
satisfied with this answer for the following reason. Supposing that as
a result of ingenious considerations an able meteorologist were to
discover that the lightning must always strike the places A and B
simultaneously, then we should be faced with the task of testing
whether or not this theoretical result is in accordance with the
reality. We encounter the same difficulty with all physical statements
in which the conception " simultaneous " plays a part. The concept
does not exist for the physicist until he has the possibility of
discovering whether or not it is fulfilled in an actual case. We thus
require a definition of simultaneity such that this definition
supplies us with the method by means of which, in the present case, he
can decide by experiment whether or not both the lightning strokes
occurred simultaneously. As long as this requirement is not satisfied,
I allow myself to be deceived as a physicist (and of course the same
applies if I am not a physicist), when I imagine that I am able to
attach a meaning to the statement of simultaneity. (I would ask the
reader not to proceed farther until he is fully convinced on this
point.)

After thinking the matter over for some time you then offer the
following suggestion with which to test simultaneity. By measuring
along the rails, the connecting line AB should be measured up and an

t/Relativity.test  view on Meta::CPAN

simultaneous relatively to the train? We shall show directly that the
answer must be in the negative.

When we say that the lightning strokes A and B are simultaneous with
respect to be embankment, we mean: the rays of light emitted at the
places A and B, where the lightning occurs, meet each other at the
mid-point M of the length A arrow B of the embankment. But the events
A and B also correspond to positions A and B on the train. Let M1 be
the mid-point of the distance A arrow B on the travelling train. Just
when the flashes (as judged from the embankment) of lightning occur,
this point M1 naturally coincides with the point M but it moves
towards the right in the diagram with the velocity v of the train. If
an observer sitting in the position M1 in the train did not possess
this velocity, then he would remain permanently at M, and the light
rays emitted by the flashes of lightning A and B would reach him
simultaneously, i.e. they would meet just where he is situated. Now in
reality (considered with reference to the railway embankment) he is
hastening towards the beam of light coming from B, whilst he is riding
on ahead of the beam of light coming from A. Hence the observer will
see the beam of light emitted from B earlier than he will see that
emitted from A. Observers who take the railway train as their

t/Relativity.test  view on Meta::CPAN

thinkable answer to this question of such a nature that the law of
transmission of light in vacuo does not contradict the principle of
relativity ? In other words : Can we conceive of a relation between
place and time of the individual events relative to both
reference-bodies, such that every ray of light possesses the velocity
of transmission c relative to the embankment and relative to the train
? This question leads to a quite definite positive answer, and to a
perfectly definite transformation law for the space-time magnitudes of
an event when changing over from one body of reference to another.

Before we deal with this, we shall introduce the following incidental
consideration. Up to the present we have only considered events taking
place along the embankment, which had mathematically to assume the
function of a straight line. In the manner indicated in Section 2
we can imagine this reference-body supplemented laterally and in a
vertical direction by means of a framework of rods, so that an event
which takes place anywhere can be localised with reference to this
framework. Fig. 2 Similarly, we can imagine the train travelling with
the velocity v to be continued across the whole of space, so that
every event, no matter how far off it may be, could also be localised
with respect to the second framework. Without committing any

t/Relativity.test  view on Meta::CPAN


*) A simple derivation of the Lorentz transformation is given in
Appendix I.



THE BEHAVIOUR OF MEASURING-RODS AND CLOCKS IN MOTION


Place a metre-rod in the x1-axis of K1 in such a manner that one end
(the beginning) coincides with the point x1=0 whilst the other end
(the end of the rod) coincides with the point x1=I. What is the length
of the metre-rod relatively to the system K? In order to learn this,
we need only ask where the beginning of the rod and the end of the rod
lie with respect to K at a particular time t of the system K. By means
of the first equation of the Lorentz transformation the values of
these two points at the time t = 0 can be shown to be

                       eq. 05a: file eq05a.gif


                       eq. 05b: file eq05b.gif

t/Relativity.test  view on Meta::CPAN

system K, the liquid plays the part of the carriage or of the
co-ordinate system K1, and finally, the light plays the part of the

                      Figure 03: file fig03.gif


man walking along the carriage, or of the moving point in the present
section. If we denote the velocity of the light relative to the tube
by W, then this is given by the equation (A) or (B), according as the
Galilei transformation or the Lorentz transformation corresponds to
the facts. Experiment * decides in favour of equation (B) derived
from the theory of relativity, and the agreement is, indeed, very
exact. According to recent and most excellent measurements by Zeeman,
the influence of the velocity of flow v on the propagation of light is
represented by formula (B) to within one per cent.

Nevertheless we must now draw attention to the fact that a theory of
this phenomenon was given by H. A. Lorentz long before the statement
of the theory of relativity. This theory was of a purely
electrodynamical nature, and was obtained by the use of particular
hypotheses as to the electromagnetic structure of matter. This

t/Relativity.test  view on Meta::CPAN



It is clear from our previous considerations that the (special) theory
of relativity has grown out of electrodynamics and optics. In these
fields it has not appreciably altered the predictions of theory, but
it has considerably simplified the theoretical structure, i.e. the
derivation of laws, and -- what is incomparably more important -- it
has considerably reduced the number of independent hypothese forming
the basis of theory. The special theory of relativity has rendered the
Maxwell-Lorentz theory so plausible, that the latter would have been
generally accepted by physicists even if experiment had decided less
unequivocally in its favour.

Classical mechanics required to be modified before it could come into
line with the demands of the special theory of relativity. For the
main part, however, this modification affects only the laws for rapid
motions, in which the velocities of matter v are not very small as
compared with the velocity of light. We have experience of such rapid
motions only in the case of electrons and ions; for other motions the
variations from the laws of classical mechanics are too small to make
themselves evident in practice. We shall not consider the motion of

t/Relativity.test  view on Meta::CPAN

laws appeared to be quite independent of each other. By means of the
theory of relativity they have been united into one law. We shall now
briefly consider how this unification came about, and what meaning is
to be attached to it.

The principle of relativity requires that the law of the concervation
of energy should hold not only with reference to a co-ordinate system
K, but also with respect to every co-ordinate system K1 which is in a
state of uniform motion of translation relative to K, or, briefly,
relative to every " Galileian " system of co-ordinates. In contrast to
classical mechanics; the Lorentz transformation is the deciding factor
in the transition from one such system to another.

By means of comparatively simple considerations we are led to draw the
following conclusion from these premises, in conjunction with the
fundamental equations of the electrodynamics of Maxwell: A body moving
with the velocity v, which absorbs * an amount of energy E[0] in
the form of radiation without suffering an alteration in velocity in
the process, has, as a consequence, its energy increased by an amount

                        eq. 19: file eq19.gif

t/Relativity.test  view on Meta::CPAN

(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of mechanics or the
law of the propagation of light in vacuo) have exactly the same form
in both cases. This can also be expressed as follows : For the
physical description of natural processes, neither of the reference
bodies K, K1 is unique (lit. " specially marked out ") as compared
with the other. Unlike the first, this latter statement need not of
necessity hold a priori; it is not contained in the conceptions of "
motion" and " reference-body " and derivable from them; only
experience can decide as to its correctness or incorrectness.

Up to the present, however, we have by no means maintained the
equivalence of all bodies of reference K in connection with the
formulation of natural laws. Our course was more on the following
Iines. In the first place, we started out from the assumption that
there exists a reference-body K, whose condition of motion is such
that the Galileian law holds with respect to it : A particle left to
itself and sufficiently far removed from all other particles moves
uniformly in a straight line. With reference to K (Galileian
reference-body) the laws of nature were to be as simple as possible.

t/Relativity.test  view on Meta::CPAN

study of electromagnetic phenomena, we have come to regard action at a
distance as a process impossible without the intervention of some
intermediary medium. If, for instance, a magnet attracts a piece of
iron, we cannot be content to regard this as meaning that the magnet
acts directly on the iron through the intermediate empty space, but we
are constrained to imagine -- after the manner of Faraday -- that the
magnet always calls into being something physically real in the space
around it, that something being what we call a "magnetic field." In
its turn this magnetic field operates on the piece of iron, so that
the latter strives to move towards the magnet. We shall not discuss
here the justification for this incidental conception, which is indeed
a somewhat arbitrary one. We shall only mention that with its aid
electromagnetic phenomena can be theoretically represented much more
satisfactorily than without it, and this applies particularly to the
transmission of electromagnetic waves. The effects of gravitation also
are regarded in an analogous manner.

The action of the earth on the stone takes place indirectly. The earth
produces in its surrounding a gravitational field, which acts on the
stone and produces its motion of fall. As we know from experience, the
intensity of the action on a body dimishes according to a quite

t/Relativity.test  view on Meta::CPAN

consider it with reference to the accelerated chest (reference-body
K1). From this we conclude, that, in general, rays of light are
propagated curvilinearly in gravitational fields. In two respects this
result is of great importance.

In the first place, it can be compared with the reality. Although a
detailed examination of the question shows that the curvature of light
rays required by the general theory of relativity is only exceedingly
small for the gravitational fields at our disposal in practice, its
estimated magnitude for light rays passing the sun at grazing
incidence is nevertheless 1.7 seconds of arc. This ought to manifest
itself in the following way. As seen from the earth, certain fixed
stars appear to be in the neighbourhood of the sun, and are thus
capable of observation during a total eclipse of the sun. At such
times, these stars ought to appear to be displaced outwards from the
sun by an amount indicated above, as compared with their apparent
position in the sky when the sun is situated at another part of the
heavens. The examination of the correctness or otherwise of this
deduction is a problem of the greatest importance, the early solution
of which is to be expected of astronomers.[2]*

t/Relativity.test  view on Meta::CPAN

consideration. These two numbers are then the " Cartesian co-ordinates
" of this corner with reference to the " Cartesian co-ordinate system"
which is determined by the arrangement of little rods.

By making use of the following modification of this abstract
experiment, we recognise that there must also be cases in which the
experiment would be unsuccessful. We shall suppose that the rods "
expand " by in amount proportional to the increase of temperature. We
heat the central part of the marble slab, but not the periphery, in
which case two of our little rods can still be brought into
coincidence at every position on the table. But our construction of
squares must necessarily come into disorder during the heating,
because the little rods on the central region of the table expand,
whereas those on the outer part do not.

With reference to our little rods -- defined as unit lengths -- the
marble slab is no longer a Euclidean continuum, and we are also no
longer in the position of defining Cartesian co-ordinates directly
with their aid, since the above construction can no longer be carried
out. But since there are other things which are not influenced in a
similar manner to the little rods (or perhaps not at all) by the

t/Relativity.test  view on Meta::CPAN

This can be done in a satisfactory manner by making a more subtle
stipulation about the measurement or the comparison of lengths.

But if rods of every kind (i.e. of every material) were to behave in
the same way as regards the influence of temperature when they are on
the variably heated marble slab, and if we had no other means of
detecting the effect of temperature than the geometrical behaviour of
our rods in experiments analogous to the one described above, then our
best plan would be to assign the distance one to two points on the
slab, provided that the ends of one of our rods could be made to
coincide with these two points ; for how else should we define the
distance without our proceeding being in the highest measure grossly
arbitrary ? The method of Cartesian coordinates must then be
discarded, and replaced by another which does not assume the validity
of Euclidean geometry for rigid bodies.*  The reader will notice
that the situation depicted here corresponds to the one brought about
by the general postitlate of relativity (Section 23).


  Notes

t/Relativity.test  view on Meta::CPAN

point with particular points of the reference-body. We can also
determine the corresponding values of the time by the observation of
encounters of the body with clocks, in conjunction with the
observation of the encounter of the hands of clocks with particular
points on the dials. It is just the same in the case of
space-measurements by means of measuring-rods, as a litttle
consideration will show.

The following statements hold generally : Every physical description
resolves itself into a number of statements, each of which refers to
the space-time coincidence of two events A and B. In terms of Gaussian
co-ordinates, every such statement is expressed by the agreement of
their four co-ordinates x[1], x[2], x[3], x[4]. Thus in reality, the
description of the time-space continuum by means of Gauss co-ordinates
completely replaces the description with the aid of a body of
reference, without suffering from the defects of the latter mode of
description; it is not tied down to the Euclidean character of the
continuum which has to be represented.



t/Relativity.test  view on Meta::CPAN



THE POSSIBILITY OF A "FINITE" AND YET "UNBOUNDED" UNIVERSE


But speculations on the structure of the universe also move in quite
another direction. The development of non-Euclidean geometry led to
the recognition of the fact, that we can cast doubt on the
infiniteness of our space without coming into conflict with the laws
of thought or with experience (Riemann, Helmholtz). These questions
have already been treated in detail and with unsurpassable lucidity by
Helmholtz and Poincaré, whereas I can only touch on them briefly here.

In the first place, we imagine an existence in two dimensional space.
Flat beings with flat implements, and in particular flat rigid
measuring-rods, are free to move in a plane. For them nothing exists
outside of this plane: that which they observe to happen to themselves
and to their flat " things " is the all-inclusive reality of their
plane. In particular, the constructions of plane Euclidean geometry
can be carried out by means of the rods e.g. the lattice construction,
considered in Section 24. In contrast to ours, the universe of

t/Relativity.test  view on Meta::CPAN




APPENDIX I

SIMPLE DERIVATION OF THE LORENTZ TRANSFORMATION
(SUPPLEMENTARY TO SECTION 11)


For the relative orientation of the co-ordinate systems indicated in
Fig. 2, the x-axes of both systems pernumently coincide. In the
present case we can divide the problem into parts by considering first
only events which are localised on the x-axis. Any such event is
represented with respect to the co-ordinate system K by the abscissa x
and the time t, and with respect to the system K1 by the abscissa x'
and the time t'. We require to find x' and t' when x and t are given.

A light-signal, which is proceeding along the positive axis of x, is
transmitted according to the equation

                                x = ct



( run in 1.892 second using v1.01-cache-2.11-cpan-de7293f3b23 )