AI-FANN-Evolving
view release on metacpan or search on metacpan
lib/AI/FANN/Evolving.pm view on Meta::CPAN
my ( $enum_name, $value, $mu ) = @_;
if ( rand(1) < $mu ) {
my ($newval) = shuffle grep { $_ != $value } values %{ $enum{$enum_name} };
$value = $newval if defined $newval;
}
return $value;
}
sub _list_properties {
(
# cascade_activation_functions => 'activationfunc',
cascade_activation_steepnesses => \&_mutate_double,
)
}
sub _layer_properties {
(
# neuron_activation_function => 'activationfunc',
# neuron_activation_steepness => \&_mutate_double,
)
}
lib/AI/FANN/Evolving.pm view on Meta::CPAN
train_error_function => 'errorfunc',
train_stop_function => 'stopfunc',
learning_rate => \&_mutate_double,
learning_momentum => \&_mutate_double,
quickprop_decay => \&_mutate_double,
quickprop_mu => \&_mutate_double,
rprop_increase_factor => \&_mutate_double,
rprop_decrease_factor => \&_mutate_double,
rprop_delta_min => \&_mutate_double,
rprop_delta_max => \&_mutate_double,
cascade_output_change_fraction => \&_mutate_double,
cascade_candidate_change_fraction => \&_mutate_double,
cascade_output_stagnation_epochs => \&_mutate_int,
cascade_candidate_stagnation_epochs => \&_mutate_int,
cascade_max_out_epochs => \&_mutate_int,
cascade_max_cand_epochs => \&_mutate_int,
cascade_num_candidate_groups => \&_mutate_int,
bit_fail_limit => \&_mutate_double, # 'fann_type',
cascade_weight_multiplier => \&_mutate_double, # 'fann_type',
cascade_candidate_limit => \&_mutate_double, # 'fann_type',
)
}
=item defaults
Getter/setter to influence default ANN configuration
=cut
sub defaults {
lib/AI/FANN/Evolving.pm view on Meta::CPAN
}
=item train
Trains the AI on the provided data object
=cut
sub train {
my ( $self, $data ) = @_;
if ( $self->train_type eq 'cascade' ) {
$log->debug("cascade training");
# set learning curve
$self->cascade_activation_functions( $self->activation_function );
# train
$self->{'ann'}->cascadetrain_on_data(
$data,
$self->neurons,
$self->neuron_printfreq,
$self->error,
);
}
else {
$log->debug("normal training");
# set learning curves
lib/AI/FANN/Evolving.pm view on Meta::CPAN
return $self->{'neuron_printfreq'} = $value;
}
else {
$log->debug("getting neuron printfreq");
return $self->{'neuron_printfreq'};
}
}
=item train_type
Getter/setter for the training type: 'cascade' or 'ordinary'. Default is ordinary
=cut
sub train_type {
my $self = shift;
if ( @_ ) {
my $value = lc shift;
$log->debug("setting train type to $value");
return $self->{'train_type'} = $value;
}
( run in 1.385 second using v1.01-cache-2.11-cpan-49f99fa48dc )