AI-FANN
view release on metacpan or search on metacpan
struct fann *self;
struct fann_train_data *data;
unsigned int max_epochs;
unsigned int epochs_between_reports;
double desired_error;
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
_check_error(aTHX_ (struct fann_error *)data);
void
fann_cascadetrain_on_file(self, filename, max_neurons, neurons_between_reports, desired_error)
struct fann *self;
const char *filename;
unsigned int max_neurons;
unsigned int neurons_between_reports;
double desired_error;
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
void
fann_cascadetrain_on_data(self, data, max_neurons, neurons_between_reports, desired_error)
struct fann *self;
struct fann_train_data *data;
unsigned int max_neurons;
unsigned int neurons_between_reports;
double desired_error;
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
_check_error(aTHX_ (struct fann_error *)data);
double
void
fann_print_connections(self)
struct fann * self;
void
fann_print_parameters(self)
struct fann * self;
void
fann_cascade_activation_functions(self, ...)
struct fann *self;
PREINIT:
unsigned int count;
PPCODE:
if (items > 1) {
unsigned int i;
enum fann_activationfunc_enum * funcs;
count = items - 1;
Newx(funcs, items - 1, enum fann_activationfunc_enum);
SAVEFREEPV(funcs);
for (i = 0; i < count; i++) {
funcs[i] = _sv2fann_activationfunc_enum(ST(i+1));
}
fann_set_cascade_activation_functions(self, funcs, count);
}
count = fann_get_cascade_activation_functions_count(self);
if (GIMME_V == G_ARRAY) {
unsigned int i;
enum fann_activationfunc_enum * funcs = fann_get_cascade_activation_functions(self);
EXTEND(SP, count);
for (i = 0; i < count; i++) {
ST(i) = sv_2mortal(_fann_activationfunc_enum2sv(funcs[i]));
}
XSRETURN(count);
}
else {
ST(0) = sv_2mortal(newSVuv(count));
XSRETURN(1);
}
void
fann_cascade_activation_steepnesses(self, ...)
struct fann *self;
PREINIT:
unsigned int count;
PPCODE:
if (items > 1) {
unsigned int i;
fann_type * steepnesses;
count = items - 1;
Newx(steepnesses, items - 1, fann_type);
SAVEFREEPV(steepnesses);
for (i = 0; i < count; i++) {
steepnesses[i] = SvNV(ST(i+1));
}
fann_set_cascade_activation_steepnesses(self, steepnesses, count);
}
count = fann_get_cascade_activation_steepnesses_count(self);
if (GIMME_V == G_ARRAY) {
unsigned int i;
fann_type * steepnesses = fann_get_cascade_activation_steepnesses(self);
EXTEND(SP, count);
for (i = 0; i < count; i++) {
ST(i) = sv_2mortal(newSVuv(steepnesses[i]));
}
XSRETURN(count);
}
else {
ST(0) = sv_2mortal(newSVuv(count));
XSRETURN(1);
}
accessors.xsh view on Meta::CPAN
RETVAL = fann_get_bit_fail(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
double
accessor_cascade_output_change_fraction(self, value = NO_INIT)
struct fann * self;
double value
CODE:
if (items > 1) {
fann_set_cascade_output_change_fraction(self, value);
}
RETVAL = fann_get_cascade_output_change_fraction(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
double
accessor_cascade_output_stagnation_epochs(self, value = NO_INIT)
struct fann * self;
double value
CODE:
if (items > 1) {
fann_set_cascade_output_stagnation_epochs(self, value);
}
RETVAL = fann_get_cascade_output_stagnation_epochs(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
double
accessor_cascade_candidate_change_fraction(self, value = NO_INIT)
struct fann * self;
double value
CODE:
if (items > 1) {
fann_set_cascade_candidate_change_fraction(self, value);
}
RETVAL = fann_get_cascade_candidate_change_fraction(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
unsigned int
accessor_cascade_candidate_stagnation_epochs(self, value = NO_INIT)
struct fann * self;
unsigned int value
CODE:
if (items > 1) {
fann_set_cascade_candidate_stagnation_epochs(self, value);
}
RETVAL = fann_get_cascade_candidate_stagnation_epochs(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
fann_type
accessor_cascade_weight_multiplier(self, value = NO_INIT)
struct fann * self;
fann_type value
CODE:
if (items > 1) {
fann_set_cascade_weight_multiplier(self, value);
}
RETVAL = fann_get_cascade_weight_multiplier(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
fann_type
accessor_cascade_candidate_limit(self, value = NO_INIT)
struct fann * self;
fann_type value
CODE:
if (items > 1) {
fann_set_cascade_candidate_limit(self, value);
}
RETVAL = fann_get_cascade_candidate_limit(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
unsigned int
accessor_cascade_max_out_epochs(self, value = NO_INIT)
struct fann * self;
unsigned int value
CODE:
if (items > 1) {
fann_set_cascade_max_out_epochs(self, value);
}
RETVAL = fann_get_cascade_max_out_epochs(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
unsigned int
accessor_cascade_max_cand_epochs(self, value = NO_INIT)
struct fann * self;
unsigned int value
CODE:
if (items > 1) {
fann_set_cascade_max_cand_epochs(self, value);
}
RETVAL = fann_get_cascade_max_cand_epochs(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
unsigned int
accessor_cascade_num_candidates(self)
struct fann * self;
CODE:
RETVAL = fann_get_cascade_num_candidates(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
unsigned int
accessor_cascade_num_candidate_groups(self, value = NO_INIT)
struct fann * self;
unsigned int value
CODE:
if (items > 1) {
fann_set_cascade_num_candidate_groups(self, value);
}
RETVAL = fann_get_cascade_num_candidate_groups(self);
OUTPUT:
RETVAL
CLEANUP:
_check_error(aTHX_ (struct fann_error *)self);
MODULE = AI::FANN PACKAGE = AI::FANN PREFIX = accessor_
enum fann_activationfunc_enum
accessor_neuron_activation_function(self, layer, neuron_index, value = NO_INIT)
genaccessors view on Meta::CPAN
rprop_decrease_factor, double, fann_get_rprop_decrease_factor, fann_set_rprop_decrease_factor
rprop_delta_min, double, fann_get_rprop_delta_min, fann_set_rprop_delta_min
rprop_delta_max, double, fann_get_rprop_delta_max, fann_set_rprop_delta_max
num_inputs, unsigned int, fann_get_num_input
num_outputs, unsigned int, fann_get_num_output
total_neurons, unsigned int, fann_get_total_neurons
total_connections, unsigned int, fann_get_total_connections
connection_rate, double, fann_get_connection_rate
MSE, double, fann_get_MSE
bit_fail, unsigned int, fann_get_bit_fail
cascade_output_change_fraction, double, fann_get_cascade_output_change_fraction, fann_set_cascade_output_change_fraction
cascade_output_stagnation_epochs, double, fann_get_cascade_output_stagnation_epochs, fann_set_cascade_output_stagnation_epochs
cascade_candidate_change_fraction, double, fann_get_cascade_candidate_change_fraction, fann_set_cascade_candidate_change_fraction
cascade_candidate_stagnation_epochs, unsigned int, fann_get_cascade_candidate_stagnation_epochs, fann_set_cascade_candidate_stagnation_epochs
cascade_weight_multiplier, fann_type, fann_get_cascade_weight_multiplier, fann_set_cascade_weight_multiplier
cascade_candidate_limit, fann_type, fann_get_cascade_candidate_limit, fann_set_cascade_candidate_limit
cascade_max_out_epochs, unsigned int, fann_get_cascade_max_out_epochs, fann_set_cascade_max_out_epochs
cascade_max_cand_epochs, unsigned int, fann_get_cascade_max_cand_epochs, fann_set_cascade_max_cand_epochs
cascade_num_candidates, unsigned int, fann_get_cascade_num_candidates
cascade_num_candidate_groups, unsigned int, fann_get_cascade_num_candidate_groups, fann_set_cascade_num_candidate_groups
neuron_activation_function, enum fann_activationfunc_enum, fann_get_activation_function, fann_set_activation_function, value, layer, neuron_index
layer_activation_function, enum fann_activationfunc_enum, , fann_set_activation_function_layer, value, layer
hidden_activation_function, enum fann_activationfunc_enum, , fann_set_activation_function_hidden
output_activation_function, enum fann_activationfunc_enum, , fann_set_activation_function_output
neuron_activation_steepness, fann_type, fann_get_activation_steepness, fann_set_activation_steepness, value, layer, neuron
layer_activation_steepness, fann_type, , fann_set_activation_steepness_layer, value, layer
hidden_activation_steepness, fann_type, , fann_set_activation_steepness_hidden
output_activation_steepness, fann_type, , fann_set_activation_steepness_output
layer_num_neurons, unsigned int, fann_get_num_neurons, , layer
num_layers, unsigned int, fann_get_num_layers
lib/AI/FANN.pm view on Meta::CPAN
-
=item $ann->train_on_file($filename, $max_epochs, $epochs_between_reports, $desired_error)
-
=item $ann->train_on_data($train_data, $max_epochs, $epochs_between_reports, $desired_error)
C<$train_data> is a AI::FANN::TrainData object.
=item $ann->cascadetrain_on_file($filename, $max_neurons, $neurons_between_reports, $desired_error)
-
=item $ann->cascadetrain_on_data($train_data, $max_neurons, $neurons_between_reports, $desired_error)
C<$train_data> is a AI::FANN::TrainData object.
=item $ann->train_epoch($train_data)
C<$train_data> is a AI::FANN::TrainData object.
=item $ann->print_connections
-
=item $ann->print_parameters
-
=item $ann->cascade_activation_functions()
returns a list of the activation functions used for cascade training.
=item $ann->cascade_activation_functions(@activation_functions)
sets the list of activation function to use for cascade training.
=item $ann->cascade_activation_steepnesses()
returns a list of the activation steepnesses used for cascade training.
=item $ann->cascade_activation_steepnesses(@activation_steepnesses)
sets the list of activation steepnesses to use for cascade training.
=item $ann->training_algorithm
=item $ann->training_algorithm($training_algorithm)
-
=item $ann->train_error_function
=item $ann->train_error_function($error_function)
lib/AI/FANN.pm view on Meta::CPAN
-
=item $ann->MSE
-
=item $ann->bit_fail
-
=item cascade_output_change_fraction
=item cascade_output_change_fraction($fraction)
-
=item $ann->cascade_output_stagnation_epochs
=item $ann->cascade_output_stagnation_epochs($epochs)
-
=item $ann->cascade_candidate_change_fraction
=item $ann->cascade_candidate_change_fraction($fraction)
-
=item $ann->cascade_candidate_stagnation_epochs
=item $ann->cascade_candidate_stagnation_epochs($epochs)
-
=item $ann->cascade_weight_multiplier
=item $ann->cascade_weight_multiplier($multiplier)
-
=item $ann->cascade_candidate_limit
=item $ann->cascade_candidate_limit($limit)
-
=item $ann->cascade_max_out_epochs
=item $ann->cascade_max_out_epochs($epochs)
-
=item $ann->cascade_max_cand_epochs
=item $ann->cascade_max_cand_epochs($epochs)
-
=item $ann->cascade_num_candidates
-
=item $ann->cascade_num_candidate_groups
=item $ann->cascade_num_candidate_groups($groups)
-
=item $ann->neuron_activation_function($layer_index, $neuron_index)
=item $ann->neuron_activation_function($layer_index, $neuron_index, $activation_function)
-
=item $ann->layer_activation_function($layer_index, $activation_function)
( run in 1.175 second using v1.01-cache-2.11-cpan-49f99fa48dc )