AI-NeuralNet-BackProp
view release on metacpan or search on metacpan
examples/ex_add2.pl view on Meta::CPAN
my @set;
my $fb;
my $net = shift;
my @data = @_;
undef @percent_diff; #@answers; undef @predictions;
for( $i=0; defined( $data[$i] ); $i++ ){
@set = @{ $data[$i] };
$fb = $net->run(\@set)->[0];
# Print output
print "Test Factors: (",join(',',@set),")\n";
$answer = eval( join( '+',@set ));
push @percent_diff, 100.0 * abs( $answer - $fb )/ $answer;
print "Prediction : $fb answer: $answer\n";
}
}
examples/ex_alpha.pl view on Meta::CPAN
# Build a test map
my $tmp = [2,1,1,1,2,
1,2,2,2,1,
1,2,2,2,1,
1,1,1,1,1,
1,2,2,2,1,
1,2,2,2,1,
1,2,2,2,1];
# Display test map
print "\nTest map:\n";
$net->join_cols($tmp,5);
# Display network results
print "Letter index matched: ",$net->run($tmp)->[0],"\n";
examples/ex_bmp.pl view on Meta::CPAN
if(!$net->load('images.net')) {
print "\nLearning started...\n";
# Make it learn the whole dataset $top times
my @list;
my $top=3;
for my $a (0..$top) {
my $t1=new Benchmark;
print "\n\nOuter Loop: $a\n";
# Test fogetfullness
my $f = $net->learn_set(\@data, inc => 0.1,
max => 500,
error => -1);
# Print it
print "\n\nForgetfullness: $f%\n";
# Save net to disk
$net->save('images.net');
examples/ex_bmp.pl view on Meta::CPAN
1,1,1,2,2,
1,2,2,2,2,
2,1,1,1,2 );
# Image number
my $fb=$net->run(\@set)->[0];
# Print output
print "\nTest Map: \n";
$net->join_cols(\@set,5);
print "Image number matched: $fb\n";
examples/ex_bmp2.pl view on Meta::CPAN
# Build a test map
my @tmp = (0,0,1,1,1,
1,1,1,0,0,
0,0,0,1,0,
0,0,0,1,0,
0,0,0,1,0,
0,0,0,0,0,
0,1,1,0,0);
# Display test map
print "\nTest map:\n";
$net->join_cols(\@tmp,5,'');
print "Running test...\n";
# Run the actual test and get network output
print "Result: ",$net->run_uc(\@tmp),"\n";
print "Test run complete.\n";
examples/ex_dow.pl view on Meta::CPAN
if(!$net->load('dow.dat')) {
print "\nLearning started...\n";
# Make it learn the whole dataset $top times
my @list;
my $top=1;
for my $a (0..$top) {
my $t1=new Benchmark;
print "\n\nOuter Loop: $a\n";
# Test fogetfullness
my $f = $net->learn_set(\@data, inc => 0.2,
max => 2000,
error => -1);
# Print it
print "\n\nForgetfullness: $f%\n";
# Save net to disk
$net->save('dow.dat');
examples/ex_dow.pl view on Meta::CPAN
# Run a prediction using fake data
# Month CPI CPI-1 CPI-3 Oil Oil-1 Oil-3 Dow Dow-1 Dow-3
my @set=( 10, 352, 309, 203, 18.3, 18.7, 16.1, 2592, 2641, 2651 );
# Dow Ave (output)
my $fb=$net->run(\@set)->[0];
# Print output
print "\nTest Factors: (",join(',',@set),")\n";
print "DOW Prediction for Month #11: $fb\n";
examples/ex_pcx.pl view on Meta::CPAN
if(!$net->load("pcx.dat")) {
print "Learning high block...\n";
print $net->learn($blocks[$net->high(\@score)],"highest");
$net->save("pcx.dat");
print "Learning low block...\n";
$net->learn($blocks[$net->low(\@score)],"lowest");
}
print "Testing random block...\n";
print "Result: ",$net->run($blocks[rand()*$b])->[0],"\n";
print "Bencmark for run: ", $net->benchmarked(), "\n";
$net->save("pcx2.net");
sub print_ref {
no strict 'refs';
shift if(substr($_[0],0,4) eq 'AI::');
( run in 0.497 second using v1.01-cache-2.11-cpan-4d50c553e7e )