AI-Classifier-Japanese
view release on metacpan or search on metacpan
"prereqs" : {
"configure" : {
"requires" : {
"CPAN::Meta" : "0",
"CPAN::Meta::Prereqs" : "0",
"Module::Build" : "0.38"
}
},
"develop" : {
"requires" : {
"Test::CPAN::Meta" : "0",
"Test::MinimumVersion" : "0.10108",
"Test::Pod" : "1.41",
"Test::Spellunker" : "v0.2.7"
}
},
"runtime" : {
"requires" : {
"Algorithm::NaiveBayes" : "0",
"Mouse" : "0",
"Text::MeCab" : "0",
"perl" : "5.008005"
}
},
"test" : {
"requires" : {
"Test::File" : "0",
"Test::More" : "0.98"
}
}
},
"provides" : {
"AI::Classifier::Japanese" : {
"file" : "lib/AI/Classifier/Japanese.pm",
"version" : "0.01"
}
},
"release_status" : "stable",
---
abstract: 'the combination wrapper of Algorithm::NaiveBayes and Text::MeCab.'
author:
- 'Shinichi Goto <shingtgt @ GMAIL COM>'
build_requires:
Test::File: 0
Test::More: 0.98
configure_requires:
CPAN::Meta: 0
CPAN::Meta::Prereqs: 0
Module::Build: 0.38
dynamic_config: 0
generated_by: 'Minilla/v0.11.1, CPAN::Meta::Converter version 2.120921'
license: perl
meta-spec:
url: http://module-build.sourceforge.net/META-spec-v1.4.html
version: 1.4
# Create new instance
my $classifier = AI::Classifier::Japanese->new();
# Add training text
$classifier->add_training_text("ãã®ããï¼æ¥½ããï¼", 'positive');
$classifier->add_training_text("ã¤ããï¼è¾ãï¼", 'negative');
# Train
$classifier->train;
# Test
my $result_ref = $classifier->predict("ãã®ãã");
print $result_ref->{'positive'}; # => Confidence value
# DESCRIPTION
AI::Classifier::Japanese is a Japanese-text category classifier module using Naive Bayes and MeCab.
This module is based on Algorithm::NaiveBayes.
Only noun, verb and adjective are currently supported.
# METHODS
- `$classifier->add_training_text($text, $category);`
Add training text.
- `$classifier->train;`
Train.
- `my $result_ref = $classifier->predict($text);`
Test and returns a predicted result hash reference which has a confidence value for each category.
- `$classifier->save_state($params_path);`
Save parameters.
- `$classifier->restore_state($params_path);`
Restore parameters from a file.
- `my @labels = $classifier->labels;`
# Create new instance
my $classifier = AI::Classifier::Japanese->new();
# Add training text
$classifier->add_training_text("ãã®ããï¼æ¥½ããï¼", 'positive');
$classifier->add_training_text("ã¤ããï¼è¾ãï¼", 'negative');
# Train
$classifier->train;
# Test
my $result_ref = $classifier->predict("ãã®ãã");
print $result_ref->{'positive'}; # => Confidence value
=head1 DESCRIPTION
AI::Classifier::Japanese is a Japanese-text category classifier module using Naive Bayes and MeCab.
This module is based on Algorithm::NaiveBayes.
Only noun, verb and adjective are currently supported.
=head1 METHODS
=item C<< $classifier->add_training_text($text, $category); >>
Add training text.
=item C<< $classifier->train; >>
Train.
=item C<< my $result_ref = $classifier->predict($text); >>
Test and returns a predicted result hash reference which has a confidence value for each category.
=item C<< $classifier->save_state($params_path); >>
Save parameters.
=item C<< $classifier->restore_state($params_path); >>
Restore parameters from a file.
=item C<< my @labels = $classifier->labels; >>
requires 'perl', '5.008001';
requires 'Mouse';
requires 'Algorithm::NaiveBayes';
requires 'Text::MeCab';
on 'test' => sub {
requires 'Test::More', '0.98';
requires 'Test::File';
};
lib/AI/Classifier/Japanese.pm view on Meta::CPAN
# Create new instance
my $classifier = AI::Classifier::Japanese->new();
# Add training text
$classifier->add_training_text("ãã®ããï¼æ¥½ããï¼", 'positive');
$classifier->add_training_text("ã¤ããï¼è¾ãï¼", 'negative');
# Train
$classifier->train;
# Test
my $result_ref = $classifier->predict("ãã®ãã");
print $result_ref->{'positive'}; # => Confidence value
=head1 DESCRIPTION
AI::Classifier::Japanese is a Japanese-text category classifier module using Naive Bayes and MeCab.
This module is based on Algorithm::NaiveBayes.
Only noun, verb and adjective are currently supported.
=head1 METHODS
lib/AI/Classifier/Japanese.pm view on Meta::CPAN
=item C<< $classifier->add_training_text($text, $category); >>
Add training text.
=item C<< $classifier->train; >>
Train.
=item C<< my $result_ref = $classifier->predict($text); >>
Test and returns a predicted result hash reference which has a confidence value for each category.
=item C<< $classifier->save_state($params_path); >>
Save parameters.
=item C<< $classifier->restore_state($params_path); >>
Restore parameters from a file.
=item C<< my @labels = $classifier->labels; >>
t/add_texts.t view on Meta::CPAN
use strict;
use Test::More;
use AI::Classifier::Japanese;
my $classifier = AI::Classifier::Japanese->new();
my $CATEGORY_POSITIVE = "positive";
my $CATEGORY_NEGATIVE = "negative";
# nothing
$classifier->add_training_text("", $CATEGORY_POSITIVE);
use strict;
use Test::More;
use AI::Classifier::Japanese;
my $classifier = AI::Classifier::Japanese->new();
my $CATEGORY_POSITIVE = "positive";
my $CATEGORY_NEGATIVE = "negative";
$classifier->add_training_text("ãã®ãã", $CATEGORY_POSITIVE);
$classifier->add_training_text("楽ãã", $CATEGORY_POSITIVE);
use strict;
use Test::More;
use_ok $_ for qw(
AI::Classifier::Japanese
);
my $classifier = AI::Classifier::Japanese->new();
isa_ok($classifier, 'AI::Classifier::Japanese');
can_ok($classifier, $_) for qw(
use strict;
use Test::More;
use AI::Classifier::Japanese;
my $classifier = AI::Classifier::Japanese->new();
my $CATEGORY_POSITIVE = "positive";
my $CATEGORY_NEGATIVE = "negative";
$classifier->add_training_text("ãã®ãã", $CATEGORY_POSITIVE);
t/save_state.t view on Meta::CPAN
use strict;
use Test::More;
use Test::File;
use AI::Classifier::Japanese;
my $classifier = AI::Classifier::Japanese->new();
my $PARAMS_PATH = "param_dummy.dat";
my $CATEGORY_POSITIVE = "positive";
my $CATEGORY_NEGATIVE = "negative";
$classifier->add_training_text("ãã®ãã", $CATEGORY_POSITIVE);
( run in 0.555 second using v1.01-cache-2.11-cpan-4d50c553e7e )