Alvis-NLPPlatform

 view release on metacpan or  search on metacpan

Build.PL  view on Meta::CPAN

use Module::Build;


 
my $class = Module::Build->subclass(
				    class => "Module::Build::Custom",
code => <<'SUBCLASS' );

sub ACTION_install {
    my $self = shift;
    $self->SUPER::ACTION_install;
}

sub ACTION_fakeinstall {
    my $self = shift;
    $self->SUPER::ACTION_fakeinstall;
}

sub ACTION_build {
    my $self = shift;

    require Config::General;

    my $rcfile = $self->base_dir() . "/etc/alvis-nlpplatform/nlpplatform.rc";

    warn "Setting the default location of nlpplatform.rc in lib/Alvis/NLPPlatform.pm\n";

Build.PL  view on Meta::CPAN

		$line = $1 . $self->install_destination("etc") . $2;
	    }
	}
	print ORIGINALRCFILEDEST $line;
    }
    close ORIGINALRCFILE;
    close ORIGINALRCFILEDEST;
    warn "Done\n";


    $self->SUPER::ACTION_build;
}

sub ACTION_clean {
    my $self = shift;
    $self->SUPER::ACTION_clean;

    require File::Copy;

    my $mainpmfile = $self->base_dir() . "/lib/Alvis/NLPPlatform.pm";
    File::Copy::move("$mainpmfile.orig", $mainpmfile);

    my $originalrcfile = $self->base_dir() . "/etc/alvis-nlpplatform/nlpplatform.rc";
    File::Copy::move("$originalrcfile.orig", $originalrcfile);
}

lib/Alvis/NLPPlatform/ParseConstituents.pm  view on Meta::CPAN


    my $word_count;



sub new {
        my($class)=shift;
        ref($class)
    and $class=ref($class);

    my($self)=$class->SUPER::new( yyversion => '1.05',
                                  yystates =>
[
	{#State 0
		DEFAULT => -1,
		GOTOS => {
			'input' => 1
		}
	},
	{#State 1
		ACTIONS => {

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

The method returns the number of tokens.

=cut


sub tokenize {
    my @arg = @_;

    my $class = shift @arg;

    return($class->SUPER::tokenize(@arg));

}

=head2 scan_ne()

    scan_ne($h_config, $doc_hash);

This method wraps the Named entity recognition and tagging
step. C<$doc_hash> is the hashtable containing containing all the
annotations of the input document.  It aims at annotating semantic

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN


=cut


sub scan_ne 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::scan_ne(@arg);

}

=head2 word_segmentation()

    word_segmentation($h_config, $doc_hash);

This method wraps the default word segmentation step.  C<$doc_hash> is
the hashtable containing containing all the annotations of the input
document.  

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub word_segmentation 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::word_segmentation(@arg);

}

=head2 sentence_segmentation()

    sentence_segmentation($h_config, $doc_hash);

This method wraps the default sentence segmentation step.
C<$doc_hash> is the hashtable containing containing all the
annotations of the input document.

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub sentence_segmentation 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::sentence_segmentation(@arg);

}

=head2 pos_tag()

    pos_tag($h_config, $doc_hash);

The method wraps the Part-of-Speech (POS) tagging.  C<$doc_hash> is
the hashtable containing containing all the annotations of the input
document.  For every input word, the wrapped Part-Of-Speech tagger

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub pos_tag 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::pos_tag(@arg);

}

=head2 lemmatization()

    lemmatization($h_config, $doc_hash);

This methods wraps the lemmatizer. C<$doc_hash> is the hashtable
containing containing all the annotations of the input document. For
every input word, the wrapped lemmatizer outputs its lemma i.e. the

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub lemmatization 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::lemmatization(@arg);

}


=head2 term_tag()

    term_tag($h_config, $doc_hash);

The method wraps the term tagging step of the ALVIS NLP
Platform. C<$doc_hash> is the hashtable containing containing all the

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub term_tag
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::term_tag(@arg);

}

=head2 syntactic_parsing()

    syntactic_parsing($h_config, $doc_hash);

This method wraps the sentence parsing. It aims at exhibiting the
graph of the syntactic dependency relations between the words of the
sentence. C<$doc_hash> is the hashtable containing containing all the

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN


=cut


sub syntactic_parsing
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::syntactic_parsing(@arg);

}

=head2 semantic_feature_tagging()

    semantic_feature_tagging($h_config, $doc_hash)

The method wraps the semantic typing step, that is the attachment of a
semantic type to the words, terms and named-entities (referred to as
lexical items in the following) in documents according to the

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub semantic_feature_tagging
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::semantic_feature_tagging(@arg);

}

=head2 semantic_relation_tagging()

    semantic_relation_tagging($h_config, $doc_hash)


This method wraps the semantic relation identification step. These
semantic relation annotations give another level of semantic

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub semantic_relation_tagging
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::semantic_relation_tagging(@arg);

}

=head2 anaphora_resolution()

    anaphora_resolution($h_config, $doc_hash)

The methods wraps the anaphora solver. C<$doc_hash> is the hashtable
containing containing all the annotations of the input document. It
aims at identifing and solving the anaphora present in a document.

lib/Alvis/NLPPlatform/UserNLPWrappers-template.pm  view on Meta::CPAN

configuration file.

=cut

sub anaphora_resolution
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::anaphora_resolution(@arg);

}

# =head1 ENVIRONMENT

=head1 SEE ALSO

Alvis web site: http://www.alvis.info

=head1 AUTHORS

lib/Alvis/NLPPlatform/UserNLPWrappers.pm  view on Meta::CPAN



our $VERSION=$Alvis::NLPPlatform::VERSION;


sub tokenize {
    my @arg = @_;

    my $class = shift @arg;

    return($class->SUPER::tokenize(@arg));

}



sub scan_ne 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::scan_ne(@arg);

}

sub word_segmentation 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::word_segmentation(@arg);

}

sub sentence_segmentation 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::sentence_segmentation(@arg);

}


sub pos_tag 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::pos_tag(@arg);

}


sub lemmatization 
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::lemmatization(@arg);

}


sub term_tag
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::term_tag(@arg);
#           &PrintOutputTreeTagger(@arg, \*STDOUT);
#           exit;
#            &execYaTeA(@arg);
#      exit;
}

sub PrintOutputTreeTagger {
    my ($h_config, $doc_hash, $output_stream) = @_;

    my $line;

lib/Alvis/NLPPlatform/UserNLPWrappers.pm  view on Meta::CPAN


}

sub syntactic_parsing
{
    my @arg = @_;

    
    my $class = shift @arg;

          $class->SUPER::syntactic_parsing(@arg);
#             &bio_syntactic_parsing(@arg);
}

my $word_id_np=1;

sub parse_constituents {
    my $constituents=$_[0];
    my $tmpptr=$_[1];
    my $decal_phrase_idx=$_[1];
    my $doc_hash=$_[2];

lib/Alvis/NLPPlatform/UserNLPWrappers.pm  view on Meta::CPAN

    return 0;

}

sub semantic_feature_tagging
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::semantic_feature_tagging(@arg);

}

sub semantic_relation_tagging
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::semantic_relation_tagging(@arg);

}


sub anaphora_resolution
{
    my @arg = @_;

    my $class = shift @arg;

    $class->SUPER::anaphora_resolution(@arg);

}



1;

__END__

=head1 NAME



( run in 1.638 second using v1.01-cache-2.11-cpan-49f99fa48dc )