Algorithm-LibLinear

 view release on metacpan or  search on metacpan

src/liblinear.xs  view on Meta::CPAN

TYPEMAP: <<'EOT'
TYPEMAP
AV * T_AVREF_REFCOUNT_FIXED

struct model * T_LIBLINEAR_MODEL

struct parameter * T_LIBLINEAR_TRAINING_PARAMETER

struct problem * T_LIBLINEAR_PROBLEM

INPUT
T_LIBLINEAR_MODEL
    if (SvROK($arg) &&
          sv_derived_from($arg, \"Algorithm::LibLinear::Model::Raw\")) {
        IV tmp = SvIV((SV*)SvRV($arg));
        $var = INT2PTR($type,tmp);
    }
    else {
        Perl_croak(aTHX_ \"%s: %s is not of type %s\",
            ${$ALIAS?\q[GvNAME(CvGV(cv))]:\qq[\"$pname\"]},
            \"$var\", \"$ntype\");

src/liblinear.xs  view on Meta::CPAN

          sv_derived_from($arg, \"Algorithm::LibLinear::Problem\")) {
        IV tmp = SvIV((SV*)SvRV($arg));
        $var = INT2PTR($type,tmp);
    }
    else {
        Perl_croak(aTHX_ \"%s: %s is not of type %s\",
            ${$ALIAS?\q[GvNAME(CvGV(cv))]:\qq[\"$pname\"]},
            \"$var\", \"$ntype\");
    }

OUTPUT
T_LIBLINEAR_MODEL
    sv_setref_pv($arg, \"Algorithm::LibLinear::Model::Raw\", (void*)$var);

T_LIBLINEAR_TRAINING_PARAMETER
    sv_setref_pv(
        $arg, \"Algorithm::LibLinear::TrainingParameter\", (void*)$var);

T_LIBLINEAR_PROBLEM
    sv_setref_pv($arg, \"Algorithm::LibLinear::Problem\", (void*)$var);
EOT

src/liblinear.xs  view on Meta::CPAN


PROTOTYPES: DISABLE

struct model *
ll_train(klass, problem_, parameter_)
    struct problem *problem_;
    struct parameter *parameter_;
CODE:
    validate_parameter(aTHX_ problem_, parameter_);
    RETVAL = train(problem_, parameter_);
OUTPUT:
    RETVAL

struct model *
ll_load(klass, filename)
    const char *filename;
CODE:
    RETVAL = load_model(filename);
    if (!RETVAL) {
        Perl_croak(aTHX_ "Failed to load a model from file: %s.", filename);
    }
OUTPUT:
    RETVAL

double
ll_bias(self, label)
    struct model *self;
    int label;
CODE:
    RETVAL = get_decfun_bias(self, label);
OUTPUT:
    RETVAL

AV *
ll_class_labels(self)
    struct model *self;
CODE:
    RETVAL = newAV();
    av_extend(RETVAL, self->nr_class - 1);
    for (int i = 0; i < self->nr_class; ++i) {
        av_push(RETVAL, newSViv(self->label[i]));
    }
OUTPUT:
    RETVAL

double
ll_coefficient(self, feature, label)
    struct model *self;
    int feature;
    int label;
CODE:
    RETVAL = get_decfun_coef(self, feature, label);
OUTPUT:
    RETVAL

bool
ll_is_oneclass_model(self)
    struct model* self;
CODE:
    RETVAL = check_oneclass_model(self);
OUTPUT:
    RETVAL

bool
ll_is_probability_model(self)
    struct model *self;
CODE:
    RETVAL = check_probability_model(self);
OUTPUT:
    RETVAL

bool
ll_is_regression_model(self)
    struct model *self;
CODE:
    RETVAL = check_regression_model(self);
OUTPUT:
    RETVAL

int
ll_num_classes(self)
    struct model *self;
CODE:
    RETVAL = get_nr_class(self);
OUTPUT:
    RETVAL

int
ll_num_features(self)
    struct model *self;
CODE:
    RETVAL = get_nr_feature(self);
OUTPUT:
    RETVAL

SV *
ll_predict(self, feature_hash)
    struct model *self;
    HV *feature_hash;
CODE:
    struct feature_node *feature_vector = hv2feature(aTHX_ feature_hash);
    double prediction = predict(self, feature_vector);
    Safefree(feature_vector);
    RETVAL = is_regression_solver(&self->param) ?
      newSVnv(prediction) : newSViv((int)prediction);
OUTPUT:
    RETVAL

AV *
ll_predict_probability(self, feature_hash)
    struct model *self;
    HV *feature_hash;
CODE:
    RETVAL = newAV();
    if (check_probability_model(self)) {
        struct feature_node *feature_vector = hv2feature(aTHX_ feature_hash);

src/liblinear.xs  view on Meta::CPAN

        int num_classes = get_nr_class(self);
        Newx(estimated_probabilities, num_classes, double);
        predict_probability(self, feature_vector, estimated_probabilities);
        av_extend(RETVAL, num_classes - 1);
        for (int i = 0; i < num_classes; ++i) {
            av_push(RETVAL, newSVnv(estimated_probabilities[i]));
        }
        Safefree(feature_vector);
        Safefree(estimated_probabilities);
    }
OUTPUT:
    RETVAL

AV *
ll_predict_values(self, feature_hash)
    struct model *self;
    HV *feature_hash;
CODE:
    struct feature_node *feature_vector = hv2feature(aTHX_ feature_hash);
    int num_classes = get_nr_class(self);
    int num_decision_values =

src/liblinear.xs  view on Meta::CPAN

    double *decision_values;
    Newx(decision_values, num_decision_values, double);
    predict_values(self, feature_vector, decision_values);
    RETVAL = newAV();
    av_extend(RETVAL, num_decision_values - 1);
    for (int i = 0; i < num_decision_values; ++i) {
        av_push(RETVAL, newSVnv(decision_values[i]));
    }
    Safefree(decision_values);
    Safefree(feature_vector);
OUTPUT:
    RETVAL

double
ll_rho(self)
    struct model *self;
CODE:
    RETVAL = get_decfun_rho(self);
OUTPUT:
    RETVAL

void
ll_save(self, filename)
    struct model *self;
    const char *filename;
CODE:
    if (save_model(filename, self) != 0) {
        Perl_croak(
          aTHX_

src/liblinear.xs  view on Meta::CPAN

        double *weights_ = RETVAL->weight;
        for (int i = 0; i < num_weights; ++i) {
            weight_labels_[i] = SvIV(*av_fetch(weight_labels, i, 0));
            weights_[i] = SvNV(*av_fetch(weights, i, 0));
        }
    } XCPT_TRY_END
    XCPT_CATCH {
        free_parameter(aTHX_ RETVAL);
        XCPT_RETHROW;
    }
OUTPUT:
    RETVAL

AV *
ll_cross_validation(self, problem_, num_folds)
    struct parameter *self;
    struct problem *problem_;
    int num_folds;
CODE:
    validate_parameter(aTHX_ problem_, self);
    double *targets;
    Newx(targets, problem_->l, double);
    cross_validation(problem_, self, num_folds, targets);
    RETVAL = newAV();
    av_extend(RETVAL, problem_->l - 1);
    for (int i = 0; i < problem_->l; ++i) {
        av_push(RETVAL, newSVnv(targets[i]));
    }
    Safefree(targets);
OUTPUT:
    RETVAL

AV *
ll_find_parameters(self, problem_, num_folds, initial_C, initial_p, update)
    struct parameter *self;
    struct problem *problem_;
    int num_folds;
    double initial_C;
    double initial_p;
    bool update;

src/liblinear.xs  view on Meta::CPAN

        if (is_regression_model) {
          self->p = best_p;
        }
    }
    RETVAL = newAV();
    av_push(RETVAL, newSVnv(best_C));
    av_push(
        RETVAL,
        is_regression_model ? newSVnv(best_p) : newSVsv(&PL_sv_undef));
    av_push(RETVAL, newSVnv(accuracy));
OUTPUT:
    RETVAL

bool
ll_is_regression_solver(self)
    struct parameter *self;
CODE:
    RETVAL = is_regression_solver(self);
OUTPUT:
    RETVAL

double
ll_cost(self)
    struct parameter *self;
CODE:
    RETVAL = self->C;
OUTPUT:
    RETVAL

double
ll_epsilon(self)
    struct parameter *self;
CODE:
    RETVAL = self->eps;
OUTPUT:
    RETVAL

double
ll_loss_sensitivity(self)
    struct parameter *self;
CODE:
    RETVAL = self->p;
OUTPUT:
    RETVAL

int
ll_solver_type(self)
    struct parameter *self;
CODE:
    RETVAL = self->solver_type;
OUTPUT:
    RETVAL

AV *
ll_weights(self)
    struct parameter *self;
CODE:
    RETVAL = newAV();
    av_extend(RETVAL, self->nr_weight - 1);
    for (int i = 0; i < self->nr_weight; ++i) {
        av_push(RETVAL, newSVnv(self->weight[i]));
    }
OUTPUT:
    RETVAL

AV *
ll_weight_labels(self)
    struct parameter *self;
CODE:
    RETVAL = newAV();
    av_extend(RETVAL, self->nr_weight - 1);
    for (int i = 0; i < self->nr_weight; ++i) {
        av_push(RETVAL, newSViv(self->weight_label[i]));
    }
OUTPUT:
    RETVAL

void
ll_DESTROY(self)
    struct parameter *self;
CODE:
    free_parameter(aTHX_ self);

MODULE = Algorithm::LibLinear  PACKAGE = Algorithm::LibLinear::Problem  PREFIX = ll_

src/liblinear.xs  view on Meta::CPAN

            features_[i] =
                hv2feature(aTHX_ feature_hash, max_feature_index, bias);
        }
        RETVAL->bias = bias;
        RETVAL->n = max_feature_index;
    } XCPT_TRY_END
    XCPT_CATCH {
        free_problem(aTHX_ RETVAL);
        XCPT_RETHROW;
    }
OUTPUT:
    RETVAL

double
ll_bias(self)
    struct problem *self;
CODE:
    RETVAL = self->bias;
OUTPUT:
    RETVAL

int
ll_data_set_size(self)
    struct problem *self;
CODE:
    RETVAL = self->l;
OUTPUT:
    RETVAL

int
ll_num_features(self)
    struct problem *self;
CODE:
    RETVAL = self->n;
OUTPUT:
    RETVAL

void
ll_DESTROY(self)
    struct problem *self;
CODE:
    free_problem(aTHX_ self);



( run in 0.342 second using v1.01-cache-2.11-cpan-4e96b696675 )