DBD-SQLite

 view release on metacpan or  search on metacpan

ppport.h  view on Meta::CPAN

    s++; if (s == send || (*s != 'F' && *s != 'f')) return 0;
    s++; if (s < send && (*s == 'I' || *s == 'i')) {
      s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
      s++; if (s == send || (*s != 'I' && *s != 'i')) return 0;
      s++; if (s == send || (*s != 'T' && *s != 't')) return 0;
      s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0;
      s++;
    }
    sawinf = 1;
  } else if (*s == 'N' || *s == 'n') {
    /* XXX TODO: There are signaling NaNs and quiet NaNs. */
    s++; if (s == send || (*s != 'A' && *s != 'a')) return 0;
    s++; if (s == send || (*s != 'N' && *s != 'n')) return 0;
    s++;
    sawnan = 1;
  } else
    return 0;

  if (sawinf) {
    numtype &= IS_NUMBER_NEG; /* Keep track of sign  */
    numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT;

sqlite3.c  view on Meta::CPAN


#if defined(SQLITE_ENABLE_MULTITHREADED_CHECKS) && !defined(SQLITE_MUTEX_OMIT)
SQLITE_PRIVATE void sqlite3MutexWarnOnContention(sqlite3_mutex*);
#else
# define sqlite3MutexWarnOnContention(x)
#endif

#ifndef SQLITE_OMIT_FLOATING_POINT
# define EXP754 (((u64)0x7ff)<<52)
# define MAN754 ((((u64)1)<<52)-1)
# define IsNaN(X) (((X)&EXP754)==EXP754 && ((X)&MAN754)!=0)
# define IsOvfl(X) (((X)&EXP754)==EXP754)
SQLITE_PRIVATE   int sqlite3IsNaN(double);
SQLITE_PRIVATE   int sqlite3IsOverflow(double);
#else
# define IsNaN(X)             0
# define sqlite3IsNaN(X)      0
# define sqlite3IsOVerflow(X) 0
#endif

/*
** An instance of the following structure holds information about SQL
** functions arguments that are the parameters to the printf() function.
*/
struct PrintfArguments {
  int nArg;                /* Total number of arguments */
  int nUsed;               /* Number of arguments used so far */
  sqlite3_value **apArg;   /* The argument values */
};

/*
** An instance of this object receives the decoding of a floating point
** value into an approximate decimal representation.
*/
struct FpDecode {
  char sign;           /* '+' or '-' */
  char isSpecial;      /* 1: Infinity  2: NaN */
  int n;               /* Significant digits in the decode */
  int iDP;             /* Location of the decimal point */
  char *z;             /* Start of significant digits */
  char zBuf[24];       /* Storage for significant digits */
};

SQLITE_PRIVATE void sqlite3FpDecode(FpDecode*,double,int,int);
SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...);
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)

sqlite3.c  view on Meta::CPAN

          iRound = -precision;
        }else if( xtype==etGENERIC ){
          if( precision==0 ) precision = 1;
          iRound = precision;
        }else{
          iRound = precision+1;
        }
        sqlite3FpDecode(&s, realvalue, iRound, flag_altform2 ? 26 : 16);
        if( s.isSpecial ){
          if( s.isSpecial==2 ){
            bufpt = flag_zeropad ? "null" : "NaN";
            length = sqlite3Strlen30(bufpt);
            break;
          }else if( flag_zeropad ){
            s.z[0] = '9';
            s.iDP = 1000;
            s.n = 1;
          }else{
            memcpy(buf, "-Inf", 5);
            bufpt = buf;
            if( s.sign=='-' ){

sqlite3.c  view on Meta::CPAN

*/
#ifndef SQLITE_UNTESTABLE
SQLITE_PRIVATE int sqlite3FaultSim(int iTest){
  int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
  return xCallback ? xCallback(iTest) : SQLITE_OK;
}
#endif

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is Not a Number (NaN).
**
** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
** Otherwise, we have our own implementation that works on most systems.
*/
SQLITE_PRIVATE int sqlite3IsNaN(double x){
  int rc;   /* The value return */
#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
  u64 y;
  memcpy(&y,&x,sizeof(y));
  rc = IsNaN(y);
#else
  rc = isnan(x);
#endif /* HAVE_ISNAN */
  testcase( rc );
  return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Return true if the floating point value is NaN or +Inf or -Inf.
*/
SQLITE_PRIVATE int sqlite3IsOverflow(double x){
  int rc;   /* The value return */
  u64 y;
  memcpy(&y,&x,sizeof(y));
  rc = IsOvfl(y);
  return rc;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */

sqlite3.c  view on Meta::CPAN

      while( e<=-10  ){
        e += 10;
        dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
      }
      while( e<=-1   ){
        e += 1;
        dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
      }
    }
    *pResult = rr[0]+rr[1];
    if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
  }
  if( sign<0 ) *pResult = -*pResult;
  assert( !sqlite3IsNaN(*pResult) );

atof_return:
  /* return true if number and no extra non-whitespace characters after */
  if( z==zEnd && nDigit>0 && eValid && eType>0 ){
    return eType;
  }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
    return -1;
  }else{
    return 0;
  }

sqlite3.c  view on Meta::CPAN

** The p->z[] array is *not* zero-terminated.
*/
SQLITE_PRIVATE void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
  int i;
  u64 v;
  int e, exp = 0;
  p->isSpecial = 0;
  p->z = p->zBuf;

  /* Convert negative numbers to positive.  Deal with Infinity, 0.0, and
  ** NaN. */
  if( r<0.0 ){
    p->sign = '-';
    r = -r;
  }else if( r==0.0 ){
    p->sign = '+';
    p->n = 1;
    p->iDP = 1;
    p->z = "0";
    return;
  }else{

sqlite3.c  view on Meta::CPAN

  pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
}

#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
  sqlite3VdbeMemSetNull(pMem);
  if( !sqlite3IsNaN(val) ){
    pMem->u.r = val;
    pMem->flags = MEM_Real;
  }
}
#endif

#ifdef SQLITE_DEBUG
/*
** Return true if the Mem holds a RowSet object.  This routine is intended
** for use inside of assert() statements.

sqlite3.c  view on Meta::CPAN

    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
    static const double r1 = 1.0;
    u64 t2 = t1;
    swapMixedEndianFloat(t2);
    assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
    assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
    swapMixedEndianFloat(x);
    memcpy(&pMem->u.r, &x, sizeof(x));
    pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
  }
}
static int serialGet7(
  const unsigned char *buf,     /* Buffer to deserialize from */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x = FOUR_BYTE_UINT(buf);
  u32 y = FOUR_BYTE_UINT(buf+4);
  x = (x<<32) + y;
  assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
  swapMixedEndianFloat(x);
  memcpy(&pMem->u.r, &x, sizeof(x));
  if( IsNaN(x) ){
    pMem->flags = MEM_Null;
    return 1;
  }
  pMem->flags = MEM_Real;
  return 0;
}
SQLITE_PRIVATE void sqlite3VdbeSerialGet(
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */

sqlite3.c  view on Meta::CPAN

static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
#endif

/*
** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
** number.  Return negative, zero, or positive if the first (i64) is less than,
** equal to, or greater than the second (double).
*/
SQLITE_PRIVATE int sqlite3IntFloatCompare(i64 i, double r){
  if( sqlite3IsNaN(r) ){
    /* SQLite considers NaN to be a NULL. And all integer values are greater
    ** than NULL */
    return 1;
  }
  if( sqlite3Config.bUseLongDouble ){
    LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
    testcase( x<r );
    testcase( x>r );
    testcase( x==r );
    return (x<r) ? -1 : (x>r);
  }else{

sqlite3.c  view on Meta::CPAN

        /* Serial types 12 or greater are strings and blobs (greater than
        ** numbers). Types 10 and 11 are currently "reserved for future
        ** use", so it doesn't really matter what the results of comparing
        ** them to numeric values are.  */
        rc = serial_type==10 ? -1 : +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        if( serial_type==7 ){
          if( serialGet7(&aKey1[d1], &mem1) ){
            rc = -1;  /* mem1 is a NaN */
          }else if( mem1.u.r<pRhs->u.r ){
            rc = -1;
          }else if( mem1.u.r>pRhs->u.r ){
            rc = +1;
          }else{
            assert( rc==0 );
          }
        }else{
          sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
          rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);

sqlite3.c  view on Meta::CPAN

#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2 */
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->u.r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into a String opcode before it is executed for the first time.  During

sqlite3.c  view on Meta::CPAN

        if( iA==0 ) goto arithmetic_result_is_null;
        if( iA==-1 ) iA = 1;
        rB = (double)(iB % iA);
        break;
      }
    }
#ifdef SQLITE_OMIT_FLOATING_POINT
    pOut->u.i = rB;
    MemSetTypeFlag(pOut, MEM_Int);
#else
    if( sqlite3IsNaN(rB) ){
      goto arithmetic_result_is_null;
    }
    pOut->u.r = rB;
    MemSetTypeFlag(pOut, MEM_Real);
#endif
  }
  break;

arithmetic_result_is_null:
  sqlite3VdbeMemSetNull(pOut);

sqlite3.c  view on Meta::CPAN

** datatype.
**
** If P1 is -1, then P3 is a register number and the datatype is taken
** from the value in that register.
**
** P5 is a bitmask of data types.  SQLITE_INTEGER is the least significant
** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
** SQLITE_BLOB is 0x08.  SQLITE_NULL is 0x10.
**
** WARNING: This opcode does not reliably distinguish between NULL and REAL
** when P1>=0.  If the database contains a NaN value, this opcode will think
** that the datatype is REAL when it should be NULL.  When P1<0 and the value
** is already stored in register P3, then this opcode does reliably
** distinguish between NULL and REAL.  The problem only arises then P1>=0.
**
** Take the jump to address P2 if and only if the datatype of the
** value determined by P1 and P3 corresponds to one of the bits in the
** P5 bitmask.
**
*/
case OP_IsType: {        /* jump */

sqlite3.c  view on Meta::CPAN

** value described by z[0..n-1] into register iMem.
**
** The z[] string will probably not be zero-terminated.  But the
** z[n] character is guaranteed to be something that does not look
** like the continuation of the number.
*/
static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
  if( ALWAYS(z!=0) ){
    double value;
    sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
    assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
    if( negateFlag ) value = -value;
    sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
  }
}
#endif


/*
** Generate an instruction that will put the integer describe by
** text z[0..n-1] into register iMem.

sqlite3.c  view on Meta::CPAN

  double x;
  int y, z;
  char zBuf[100];
  UNUSED_PARAMETER(argc);
  assert( argc==3 );
  x = sqlite3_value_double(argv[0]);
  y = sqlite3_value_int(argv[1]);
  z = sqlite3_value_int(argv[2]);
  sqlite3FpDecode(&s, x, y, z);
  if( s.isSpecial==2 ){
    sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
  }else{
    sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
  }
  sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
}
#endif /* SQLITE_DEBUG */

/*
** All of the FuncDef structures in the aBuiltinFunc[] array above
** to the global function hash table.  This occurs at start-time (as

sqlite3.c  view on Meta::CPAN

          if( pCol->notNull ){
            /* (1) NOT NULL columns may not contain a NULL */
            int jmp3;
            int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
            VdbeCoverage(v);
            if( p1<0 ){
              sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */
              jmp3 = jmp2;
            }else{
              sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
              /* OP_IsType does not detect NaN values in the database file
              ** which should be treated as a NULL.  So if the header type
              ** is REAL, we have to load the actual data using OP_Column
              ** to reliably determine if the value is a NULL. */
              sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);
              sqlite3ColumnDefault(v, pTab, j, 3);
              jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
              VdbeCoverage(v);
            }
            zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
                                pCol->zCnName);

sqlite3.c  view on Meta::CPAN

  */
#ifndef NDEBUG
#ifndef SQLITE_OMIT_FLOATING_POINT
  /* This section of code's only "output" is via assert() statements. */
  if( rc==SQLITE_OK ){
    u64 x = (((u64)1)<<63)-1;
    double y;
    assert(sizeof(x)==8);
    assert(sizeof(x)==sizeof(y));
    memcpy(&y, &x, 8);
    assert( sqlite3IsNaN(y) );
  }
#endif
#endif

  /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT
  ** compile-time option.
  */
#ifdef SQLITE_EXTRA_INIT
  if( bRunExtraInit ){
    int SQLITE_EXTRA_INIT(const char*);

sqlite3.c  view on Meta::CPAN

  char c1;
  char c2;
  char n;
  char eType;
  char nRepl;
  char *zMatch;
  char *zRepl;
} aNanInfName[] = {
  { 'i', 'I', 3, JSONB_FLOAT, 7, "inf", "9.0e999" },
  { 'i', 'I', 8, JSONB_FLOAT, 7, "infinity", "9.0e999" },
  { 'n', 'N', 3, JSONB_NULL, 4, "NaN", "null" },
  { 'q', 'Q', 4, JSONB_NULL, 4, "QNaN", "null" },
  { 's', 'S', 4, JSONB_NULL, 4, "SNaN", "null" },
};


/*
** Report the wrong number of arguments for json_insert(), json_replace()
** or json_set().
*/
static void jsonWrongNumArgs(
  sqlite3_context *pCtx,
  const char *zFuncName

sqlite3.c  view on Meta::CPAN

      goto json_parse_restart;
    }
    pParse->iErr = i;
    return -1;
  }
  case 'n': {
    if( strncmp(z+i,"null",4)==0 && !sqlite3Isalnum(z[i+4]) ){
      jsonBlobAppendOneByte(pParse, JSONB_NULL);
      return i+4;
    }
    /* fall-through into the default case that checks for NaN */
    /* no break */ deliberate_fall_through
  }
  default: {
    u32 k;
    int nn;
    c = z[i];
    for(k=0; k<sizeof(aNanInfName)/sizeof(aNanInfName[0]); k++){
      if( c!=aNanInfName[k].c1 && c!=aNanInfName[k].c2 ) continue;
      nn = aNanInfName[k].n;
      if( sqlite3StrNICmp(&z[i], aNanInfName[k].zMatch, nn)!=0 ){

sqlite3.c  view on Meta::CPAN

          memset(pParse, 0, sizeof(pParse[0]));
          return 1;
        }
      }else{
        jsonBlobAppendNode(pParse, JSONB_TEXTRAW, nJson, zJson);
      }
      break;
    }
    case SQLITE_FLOAT: {
      double r = sqlite3_value_double(pArg);
      if( NEVER(sqlite3IsNaN(r)) ){
        jsonBlobAppendNode(pParse, JSONB_NULL, 0, 0);
      }else{
        int n = sqlite3_value_bytes(pArg);
        const char *z = (const char*)sqlite3_value_text(pArg);
        if( z==0 ) return 1;
        if( z[0]=='I' ){
          jsonBlobAppendNode(pParse, JSONB_FLOAT, 5, "9e999");
        }else if( z[0]=='-' && z[1]=='I' ){
          jsonBlobAppendNode(pParse, JSONB_FLOAT, 6, "-9e999");
        }else{



( run in 0.253 second using v1.01-cache-2.11-cpan-4d50c553e7e )