Alien-XGBoost

 view release on metacpan or  search on metacpan

xgboost/demo/binary_classification/README.md  view on Meta::CPAN

Run the command again, we can find the log file becomes
```
[0]     test-error:0.016139     trainname-error:0.014433
[1]     test-error:0.000000     trainname-error:0.001228
```
The rule is eval[name-printed-in-log] = filename, then the file will be added to monitoring process, and evaluated each round.

xgboost also supports monitoring multiple metrics, suppose we also want to monitor average log-likelihood of each prediction during training, simply add ```eval_metric=logloss``` to configure. Run again, we can find the log file becomes
```
[0]     test-error:0.016139     test-negllik:0.029795   trainname-error:0.014433        trainname-negllik:0.027023
[1]     test-error:0.000000     test-negllik:0.000000   trainname-error:0.001228        trainname-negllik:0.002457
```
### Saving Progress Models
If you want to save model every two round, simply set save_period=2. You will find 0002.model in the current folder. If you want to change the output folder of models, add model_dir=foldername. By default xgboost saves the model of last round.

#### Continue from Existing Model
If you want to continue boosting from existing model, say 0002.model, use
```
../../xgboost mushroom.conf model_in=0002.model num_round=2 model_out=continue.model
```
xgboost will load from 0002.model continue boosting for 2 rounds, and save output to continue.model. However, beware that the training and evaluation data specified in mushroom.conf should not change when you use this function.

xgboost/demo/regression/machine.data  view on Meta::CPAN

amdahl,470v/7,29,8000,32000,32,8,32,269,253
amdahl,470v/7a,29,8000,32000,32,8,32,220,253
amdahl,470v/7b,29,8000,32000,32,8,32,172,253
amdahl,470v/7c,29,8000,16000,32,8,16,132,132
amdahl,470v/b,26,8000,32000,64,8,32,318,290
amdahl,580-5840,23,16000,32000,64,16,32,367,381
amdahl,580-5850,23,16000,32000,64,16,32,489,381
amdahl,580-5860,23,16000,64000,64,16,32,636,749
amdahl,580-5880,23,32000,64000,128,32,64,1144,1238
apollo,dn320,400,1000,3000,0,1,2,38,23
apollo,dn420,400,512,3500,4,1,6,40,24
basf,7/65,60,2000,8000,65,1,8,92,70
basf,7/68,50,4000,16000,65,1,8,138,117
bti,5000,350,64,64,0,1,4,10,15
bti,8000,200,512,16000,0,4,32,35,64
burroughs,b1955,167,524,2000,8,4,15,19,23
burroughs,b2900,143,512,5000,0,7,32,28,29
burroughs,b2925,143,1000,2000,0,5,16,31,22
burroughs,b4955,110,5000,5000,142,8,64,120,124
burroughs,b5900,143,1500,6300,0,5,32,30,35
burroughs,b5920,143,3100,6200,0,5,20,33,39

xgboost/demo/regression/machine.data  view on Meta::CPAN

honeywell,dps:7/45,330,1000,4000,0,3,6,22,25
honeywell,dps:7/55,140,2000,4000,0,3,6,29,28
honeywell,dps:7/65,140,2000,4000,0,4,8,40,29
honeywell,dps:8/44,140,2000,4000,8,1,20,35,32
honeywell,dps:8/49,140,2000,32000,32,1,20,134,175
honeywell,dps:8/50,140,2000,8000,32,1,54,66,57
honeywell,dps:8/52,140,2000,32000,32,1,54,141,181
honeywell,dps:8/62,140,2000,32000,32,1,54,189,181
honeywell,dps:8/20,140,2000,4000,8,1,20,22,32
ibm,3033:s,57,4000,16000,1,6,12,132,82
ibm,3033:u,57,4000,24000,64,12,16,237,171
ibm,3081,26,16000,32000,64,16,24,465,361
ibm,3081:d,26,16000,32000,64,8,24,465,350
ibm,3083:b,26,8000,32000,0,8,24,277,220
ibm,3083:e,26,8000,16000,0,8,16,185,113
ibm,370/125-2,480,96,512,0,1,1,6,15
ibm,370/148,203,1000,2000,0,1,5,24,21
ibm,370/158-3,115,512,6000,16,1,6,45,35
ibm,38/3,1100,512,1500,0,1,1,7,18
ibm,38/4,1100,768,2000,0,1,1,13,20
ibm,38/5,600,768,2000,0,1,1,16,20

xgboost/demo/regression/machine.data  view on Meta::CPAN

ibm,4361-4,25,2000,12000,8,1,4,49,59
ibm,4361-5,25,2000,12000,16,3,5,66,65
ibm,4381-1,17,4000,16000,8,6,12,100,101
ibm,4381-2,17,4000,16000,32,6,12,133,116
ibm,8130-a,1500,768,1000,0,0,0,12,18
ibm,8130-b,1500,768,2000,0,0,0,18,20
ibm,8140,800,768,2000,0,0,0,20,20
ipl,4436,50,2000,4000,0,3,6,27,30
ipl,4443,50,2000,8000,8,3,6,45,44
ipl,4445,50,2000,8000,8,1,6,56,44
ipl,4446,50,2000,16000,24,1,6,70,82
ipl,4460,50,2000,16000,24,1,6,80,82
ipl,4480,50,8000,16000,48,1,10,136,128
magnuson,m80/30,100,1000,8000,0,2,6,16,37
magnuson,m80/31,100,1000,8000,24,2,6,26,46
magnuson,m80/32,100,1000,8000,24,3,6,32,46
magnuson,m80/42,50,2000,16000,12,3,16,45,80
magnuson,m80/43,50,2000,16000,24,6,16,54,88
magnuson,m80/44,50,2000,16000,24,6,16,65,88
microdata,seq.ms/3200,150,512,4000,0,8,128,30,33
nas,as/3000,115,2000,8000,16,1,3,50,46
nas,as/3000-n,115,2000,4000,2,1,5,40,29
nas,as/5000,92,2000,8000,32,1,6,62,53
nas,as/5000-e,92,2000,8000,32,1,6,60,53
nas,as/5000-n,92,2000,8000,4,1,6,50,41
nas,as/6130,75,4000,16000,16,1,6,66,86
nas,as/6150,60,4000,16000,32,1,6,86,95
nas,as/6620,60,2000,16000,64,5,8,74,107
nas,as/6630,60,4000,16000,64,5,8,93,117
nas,as/6650,50,4000,16000,64,5,10,111,119
nas,as/7000,72,4000,16000,64,8,16,143,120
nas,as/7000-n,72,2000,8000,16,6,8,105,48
nas,as/8040,40,8000,16000,32,8,16,214,126
nas,as/8050,40,8000,32000,64,8,24,277,266
nas,as/8060,35,8000,32000,64,8,24,370,270
nas,as/9000-dpc,38,16000,32000,128,16,32,510,426
nas,as/9000-n,48,4000,24000,32,8,24,214,151
nas,as/9040,38,8000,32000,64,8,24,326,267
nas,as/9060,30,16000,32000,256,16,24,510,603
ncr,v8535:ii,112,1000,1000,0,1,4,8,19
ncr,v8545:ii,84,1000,2000,0,1,6,12,21
ncr,v8555:ii,56,1000,4000,0,1,6,17,26
ncr,v8565:ii,56,2000,6000,0,1,8,21,35
ncr,v8565:ii-e,56,2000,8000,0,1,8,24,41
ncr,v8575:ii,56,4000,8000,0,1,8,34,47
ncr,v8585:ii,56,4000,12000,0,1,8,42,62
ncr,v8595:ii,56,4000,16000,0,1,8,46,78
ncr,v8635,38,4000,8000,32,16,32,51,80
ncr,v8650,38,4000,8000,32,16,32,116,80
ncr,v8655,38,8000,16000,64,4,8,100,142
ncr,v8665,38,8000,24000,160,4,8,140,281
ncr,v8670,38,4000,16000,128,16,32,212,190
nixdorf,8890/30,200,1000,2000,0,1,2,25,21
nixdorf,8890/50,200,1000,4000,0,1,4,30,25
nixdorf,8890/70,200,2000,8000,64,1,5,41,67
perkin-elmer,3205,250,512,4000,0,1,7,25,24
perkin-elmer,3210,250,512,4000,0,4,7,50,24
perkin-elmer,3230,250,1000,16000,1,1,8,50,64
prime,50-2250,160,512,4000,2,1,5,30,25
prime,50-250-ii,160,512,2000,2,3,8,32,20
prime,50-550-ii,160,1000,4000,8,1,14,38,29
prime,50-750-ii,160,1000,8000,16,1,14,60,43
prime,50-850-ii,160,2000,8000,32,1,13,109,53
siemens,7.521,240,512,1000,8,1,3,6,19
siemens,7.531,240,512,2000,8,1,5,11,22
siemens,7.536,105,2000,4000,8,3,8,22,31
siemens,7.541,105,2000,6000,16,6,16,33,41
siemens,7.551,105,2000,8000,16,4,14,58,47
siemens,7.561,52,4000,16000,32,4,12,130,99
siemens,7.865-2,70,4000,12000,8,6,8,75,67
siemens,7.870-2,59,4000,12000,32,6,12,113,81
siemens,7.872-2,59,8000,16000,64,12,24,188,149
siemens,7.875-2,26,8000,24000,32,8,16,173,183
siemens,7.880-2,26,8000,32000,64,12,16,248,275
siemens,7.881-2,26,8000,32000,128,24,32,405,382
sperry,1100/61-h1,116,2000,8000,32,5,28,70,56
sperry,1100/81,50,2000,32000,24,6,26,114,182
sperry,1100/82,50,2000,32000,48,26,52,208,227
sperry,1100/83,50,2000,32000,112,52,104,307,341
sperry,1100/84,50,4000,32000,112,52,104,397,360
sperry,1100/93,30,8000,64000,96,12,176,915,919
sperry,1100/94,30,8000,64000,128,12,176,1150,978
sperry,80/3,180,262,4000,0,1,3,12,24
sperry,80/4,180,512,4000,0,1,3,14,24
sperry,80/5,180,262,4000,0,1,3,18,24
sperry,80/6,180,512,4000,0,1,3,21,24
sperry,80/8,124,1000,8000,0,1,8,42,37

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/dermatology.data  view on Meta::CPAN

2,1,0,2,0,0,0,0,0,0,0,0,0,0,3,1,2,1,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,8,5
2,1,1,3,0,0,1,0,0,0,0,0,0,0,2,0,2,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,19,5
1,1,2,2,0,0,0,0,1,0,0,0,1,0,3,0,3,2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,36,5
2,1,0,3,0,0,0,0,0,0,0,0,0,0,3,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,70,5
2,2,1,3,0,0,0,0,0,0,0,0,0,0,3,0,2,1,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,52,5
2,2,3,3,1,2,0,1,0,0,0,2,0,0,0,2,2,0,1,0,0,0,0,0,1,0,2,0,2,0,0,2,3,25,3
3,2,2,2,0,2,0,2,0,0,0,3,0,0,0,3,2,0,1,0,0,0,0,0,1,0,2,0,3,0,0,3,3,36,3
2,2,2,3,1,2,0,1,0,0,0,2,0,0,0,2,2,0,1,0,0,0,0,0,1,0,2,0,3,0,0,1,2,50,3
2,1,2,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,0,0,0,0,0,2,0,0,0,2,0,34,4
3,1,2,1,0,0,0,0,2,3,0,0,0,0,0,0,2,0,2,3,2,2,0,3,0,2,0,0,0,0,0,2,0,17,1
2,2,2,0,1,0,0,0,2,1,0,0,0,0,0,0,3,1,1,3,2,2,0,2,0,0,0,0,0,0,0,2,0,24,1
2,1,1,0,1,0,0,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,1,0,3,0,0,0,2,0,22,4
2,1,2,1,1,0,0,0,0,0,0,0,0,0,0,2,2,0,1,0,0,0,0,0,0,1,0,3,0,0,0,2,0,55,4
2,1,1,0,1,0,0,0,0,0,0,0,0,0,0,3,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,12,4
2,3,2,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,2,3,3,2,0,2,0,2,0,0,0,0,0,2,0,43,1
3,2,2,0,0,0,0,0,0,1,1,0,0,0,0,0,3,0,2,2,3,2,0,1,0,2,0,0,0,0,0,2,0,50,1
2,2,2,1,0,0,0,0,2,2,0,0,0,0,0,0,2,0,2,2,3,2,0,0,0,2,0,0,0,0,0,2,0,36,1
2,2,3,3,2,3,0,1,0,0,0,2,0,0,0,3,2,0,1,0,0,0,0,0,2,0,3,0,3,0,0,2,3,26,3
3,1,2,3,2,2,0,2,0,0,0,2,0,0,0,2,2,0,1,0,0,0,0,0,2,0,2,0,2,0,0,3,3,16,3
2,2,2,3,2,3,0,2,0,0,0,2,0,0,0,2,2,0,0,0,0,0,0,0,3,0,2,0,2,0,0,2,3,32,3
2,1,2,3,3,2,0,2,0,0,0,3,0,0,0,3,1,0,0,0,0,0,0,0,2,0,3,0,2,0,0,2,3,51,3

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/dermatology.data  view on Meta::CPAN

3,2,2,0,0,0,3,0,1,0,1,0,0,0,0,1,3,1,1,0,0,0,0,0,0,0,0,2,0,3,2,2,0,10,6
2,2,1,0,0,0,2,0,2,0,0,0,0,0,0,3,2,0,1,0,0,0,0,0,0,0,0,3,0,2,2,2,0,7,6
1,2,2,2,0,0,0,0,2,2,0,0,0,1,0,0,2,1,3,3,3,2,0,2,0,2,0,0,0,0,0,2,0,25,1
2,2,2,3,2,0,0,0,2,3,1,0,0,1,0,0,2,2,2,2,2,2,0,2,0,3,0,0,0,0,0,2,0,9,1
3,2,2,3,2,0,0,0,2,3,0,0,0,0,0,0,3,0,2,2,3,2,0,3,0,2,0,0,0,0,0,1,0,55,1
1,1,1,2,0,0,0,0,0,0,0,0,0,0,3,2,2,0,0,0,2,0,0,0,0,0,0,1,0,0,0,2,0,45,5
2,0,1,2,0,0,0,0,0,0,0,0,0,0,3,1,2,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,56,5
2,3,2,3,2,0,0,0,3,2,0,0,0,1,0,0,3,2,3,2,2,2,0,3,0,3,0,0,0,0,0,0,0,36,1
2,2,2,2,2,0,0,0,3,0,1,0,0,0,0,0,2,2,2,2,3,3,0,2,0,3,0,0,0,0,0,0,0,75,1
2,2,2,0,1,0,0,0,0,1,0,0,0,1,0,0,2,0,2,3,2,3,2,1,0,1,0,0,0,0,0,2,0,45,1
2,3,2,1,0,0,0,0,2,2,0,0,0,1,0,0,2,0,2,2,2,2,0,2,0,2,0,0,0,0,0,3,0,24,1
2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,3,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,40,2
2,2,1,1,0,0,0,0,0,0,0,0,1,1,0,2,2,1,0,0,0,0,0,0,0,0,0,3,0,0,0,1,0,25,2
2,1,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,25,4
3,2,1,0,1,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,36,4
3,2,2,2,3,2,0,2,0,0,0,2,2,0,0,3,3,0,0,0,0,0,0,0,3,0,3,0,3,0,0,2,3,28,3
2,1,3,1,2,3,0,2,0,0,0,2,0,0,0,3,2,0,0,0,0,0,0,0,3,0,2,0,1,0,0,2,3,50,3
3,2,2,0,0,0,0,0,3,3,0,0,0,1,0,0,2,0,2,3,2,3,0,2,0,2,0,0,0,0,0,3,0,35,1

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/rank-demo-0.txt.train  view on Meta::CPAN

0 1:985.574005058 2:320.223538037 3:0.621236086198
0 1:1010.52917943 2:635.535543082 3:2.14984030531
0 1:1012.91900422 2:132.387300057 3:0.488761066665
0 1:990.829194034 2:135.102081162 3:0.747701610673
0 1:1007.05103629 2:154.289183562 3:0.464118249201
0 1:994.9573036 2:317.483732878 3:0.0313685555674
0 1:987.8071541 2:731.349178363 3:0.244616944245
1 1:10.0349544469 2:2.29750906143 3:36.4949974282
0 1:9.92953881383 2:5.39134047297 3:120.041297548
0 1:10.0909866713 2:9.06191026312 3:138.807825798
1 1:10.2090970614 2:0.0784495944448 3:58.207703565
0 1:9.85695905893 2:9.99500727713 3:56.8610243778
1 1:10.0805758547 2:0.0410805760559 3:222.102302076
0 1:10.1209914486 2:9.9729127088 3:171.888238763
0 1:10.0331939798 2:0.853339303793 3:311.181328375
0 1:9.93901762951 2:2.72757449146 3:78.4859514413
0 1:10.0752365346 2:9.18695328235 3:49.8520256553

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/rank-demo-0.txt.train  view on Meta::CPAN

0 1:9.97678959238 2:665.770979738 3:481.069628909
0 1:9.78554312773 2:257.309358658 3:47.7324475232
0 1:10.0985967566 2:935.896512941 3:138.937052808
0 1:10.0522252319 2:876.376299607 3:6.00373510669
1 1:9.88065229501 2:9.99979825653 3:0.0674603696149
0 1:10.0483244098 2:0.0653852316381 3:0.130679349938
1 1:9.99685215607 2:1.76602542774 3:0.2551321159
0 1:9.99750159428 2:1.01591534436 3:0.145445506504
1 1:9.97380908941 2:0.940048645571 3:0.411805696316
0 1:9.99977678382 2:6.91329929641 3:5.57858201258
0 1:978.876096381 2:933.775364741 3:0.579170824236
0 1:998.381016406 2:220.940470582 3:2.01491778565
0 1:987.917644594 2:8.74667873567 3:0.364006099758
0 1:1000.20994892 2:25.2945450565 3:3.5684398964
0 1:1014.57141264 2:675.593540733 3:0.164174055535
0 1:998.867283535 2:765.452750642 3:0.818425293238

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/rank-demo-1.txt.train  view on Meta::CPAN

0 1:10.2143092481 2:273.576539531 3:137.111774354
0 1:10.0366658918 2:842.469052609 3:2.32134375927
0 1:10.1281202091 2:395.654057342 3:35.4184893063
0 1:10.1443721289 2:960.058461049 3:272.887070637
0 1:10.1353234784 2:535.51304462 3:2.15393842032
1 1:10.0451640374 2:216.733858424 3:55.6533298016
1 1:9.94254592171 2:44.5985537358 3:304.614176871
0 1:10.1319257181 2:613.545504487 3:5.42391587912
0 1:1020.63622468 2:997.476744201 3:0.509425590461
0 1:986.304585519 2:822.669937965 3:0.605133561808
1 1:1012.66863221 2:26.7185759069 3:0.0875458784828

xgboost/jvm-packages/xgboost4j-spark/src/test/resources/rank-demo.txt.test  view on Meta::CPAN

0 1:10.0523814718 2:4.72152505167 3:0.672978832666
0 1:10.0449715742 2:8.40373928536 3:0.384457573667
1 1:996.398498791 2:941.976309154 3:0.230269231292
0 1:1005.11269468 2:900.093680877 3:0.265031528873
0 1:997.160349441 2:891.331101688 3:2.19362017313
0 1:993.754139031 2:44.8000165317 3:1.03868009875
1 1:994.831299184 2:241.959208453 3:0.667631827024
0 1:995.948333283 2:7.94326917112 3:0.750490877118
0 1:989.733981273 2:7.52077625436 3:0.0126335967282
0 1:1003.54086516 2:6.48177510564 3:1.19441696788
0 1:996.56177804 2:9.71959812613 3:1.33082465111
0 1:1005.61382467 2:0.234339369309 3:1.17987797356
1 1:980.215758708 2:6.85554542926 3:2.63965085259
1 1:987.776408872 2:2.23354609991 3:0.841885278028
0 1:1006.54260396 2:8.12142049834 3:2.26639471174
0 1:1009.87927639 2:6.40028519044 3:0.775155669615
0 1:9.95006244393 2:928.76896718 3:234.948458244
1 1:10.0749152258 2:255.294574476 3:62.9728604166
1 1:10.1916541988 2:312.682867085 3:92.299413677
0 1:9.95646724484 2:742.263188416 3:53.3310473654
0 1:9.86211293222 2:996.237023866 3:2.00760301168
1 1:9.91801019468 2:303.971783709 3:50.3147230679
0 1:996.983996934 2:9.52188222766 3:1.33588120981
0 1:995.704388126 2:9.49260524915 3:0.908498516541
0 1:987.86480767 2:0.0870786716821 3:0.108859297837
0 1:1000.99561307 2:2.85272694575 3:0.171134518956
0 1:1011.05508066 2:7.55336771768 3:1.04950084825
1 1:985.52199365 2:0.763305780608 3:1.7402424375
0 1:10.0430321467 2:813.185427181 3:4.97728254185
0 1:10.0812334228 2:258.297288417 3:0.127477670549
0 1:9.84210504292 2:887.205815261 3:0.991689193955
1 1:9.94625332613 2:0.298622762132 3:0.147881353231
0 1:9.97800659954 2:727.619819757 3:0.0718361141866
1 1:9.8037938472 2:957.385549617 3:0.0618862028941

xgboost/tests/cpp/objective/test_regression_obj.cc  view on Meta::CPAN


TEST(Objective, LogisticRegressionGPair) {
  xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:logistic");
  std::vector<std::pair<std::string, std::string> > args;
  obj->Configure(args);
  CheckObjFunction(obj,
                   {   0,  0.1f,  0.9f,    1,    0,   0.1f,  0.9f,      1},
                   {   0,    0,    0,    0,    1,     1,     1,     1},
                   {   1,    1,    1,    1,    1,     1,     1,     1},
                   { 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
                   {0.25f, 0.24f, 0.20f, 0.19f, 0.25f,  0.24f,  0.20f,  0.19f});
}

TEST(Objective, LogisticRegressionBasic) {
  xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("reg:logistic");
  std::vector<std::pair<std::string, std::string> > args;
  obj->Configure(args);

  // test label validation
  EXPECT_ANY_THROW(CheckObjFunction(obj, {0}, {10}, {1}, {0}, {0}))
    << "Expected error when label not in range [0,1f] for LogisticRegression";

xgboost/tests/cpp/objective/test_regression_obj.cc  view on Meta::CPAN


TEST(Objective, LogisticRawGPair) {
  xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("binary:logitraw");
  std::vector<std::pair<std::string, std::string> > args;
  obj->Configure(args);
  CheckObjFunction(obj,
                   {   0,  0.1f,  0.9f,    1,    0,   0.1f,   0.9f,     1},
                   {   0,    0,    0,    0,    1,     1,     1,     1},
                   {   1,    1,    1,    1,    1,     1,     1,     1},
                   { 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
                   {0.25f, 0.24f, 0.20f, 0.19f, 0.25f,  0.24f,  0.20f,  0.19f});
}

TEST(Objective, PoissonRegressionGPair) {
  xgboost::ObjFunction * obj = xgboost::ObjFunction::Create("count:poisson");
  std::vector<std::pair<std::string, std::string> > args;
  args.push_back(std::make_pair("max_delta_step", "0.1f"));
  obj->Configure(args);
  CheckObjFunction(obj,
                   {   0,  0.1f,  0.9f,    1,    0,  0.1f,  0.9f,    1},
                   {   0,    0,    0,    0,    1,    1,    1,    1},



( run in 1.437 second using v1.01-cache-2.11-cpan-7add2cbd662 )