Algorithm-TrunkClassifier

 view release on metacpan or  search on metacpan

lib/Algorithm/TrunkClassifier/Classification.pm  view on Meta::CPAN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
use POSIX;
 
our $VERSION = "v1.0.1";
 
#Description: Function responsible for building decision trunks and classifying test samples using LOOCV
#Parameters: (1) Package, (2) input dataset, (3) test dataset, (4) classification procedure, (5) split percent,
#            (6) testset data file name, (7) classification variable name, (8) output folder name,
#            (9) number of levels, (10) verbose flag, (11) input data file name (12) useall flag
#Return value: None
sub trainAndClassify($ $ $ $ $ $ $ $ $ $ $ $ $){
        shift(@_);
        my ($dataWrapper, $testset, $CLASSIFY, $SPLITPERCENT, $TESTFILE, $CLASSNAME, $OUTPUT, $LEVELS, $VERBOSE, $DATAFILE, $USEALL) = @_;
         
        #Create output files
        if(!-e $OUTPUT && $OUTPUT ne "."){
                system("mkdir $OUTPUT");
        }
        open(PERFORMANCE, ">$OUTPUT/performance.txt") or die "Error: Unable to create output file\n";
        open(LOO_TRUNKS, ">$OUTPUT/loo_trunks.txt") or die "Error: Unable to create output file\n";
        open(CTS_TRUNKS, ">$OUTPUT/cts_trunks.txt") or die "Error: Unable to create output file\n";

lib/Algorithm/TrunkClassifier/Classification.pm  view on Meta::CPAN

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        close(LOG);
        if($VERBOSE){
                print("Trunk classifier: Job finished\n");
        }
}
 
#Description: Wrapper for the trunk build loop
#Parameters: (1) Training dataset, (2) level limit, (3) sample index, (4) feature occurrence hash ref,
#            (5) selected features hash ref, (6) level break flag ref, (7) verbose flag
#Return value: Decision trunk object
sub buildTrunk($ $ $ $ $ $ $){
        my ($buildSet, $levelLimit, $sampleIndex, $featOccurRef, $selFeatRef, $levelBreakRef, $VERBOSE) = @_;
         
        #Trunk build loop
        my $decisionTrunk = Algorithm::TrunkClassifier::DecisionTrunk->new();
        my $noSampleBreak = 0;
        for(my $levelIndex = 1; $levelIndex <= $levelLimit; $levelIndex++){
         
                #Perform feature selection
                my $featureName;
                my $featureIndex;

lib/Algorithm/TrunkClassifier/Classification.pm  view on Meta::CPAN

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
                if($noSampleBreak){
                        last;
                }
        }
        return $decisionTrunk;
}
 
#Description: Determine the decision trunk level with highest feature selection stability
#Parameters: (1) Hash reference containing selected features, (2) number of samples in the dataset
#Return value: Number of decision trunk levels to use for classification
sub stabilityCheck($ $){
        my ($hashRef, $numSamples) = @_;
        my %featOccurrence = %{$hashRef};
        my $numThresh = 6;
        my $chosenLevel = 0;
        foreach my $levelIndex (1 .. 5){
                if(!$featOccurrence{$levelIndex}){
                        next;
                }
                my %features = %{$featOccurrence{$levelIndex}};
                my $numFeats = scalar(keys(%features));

lib/Algorithm/TrunkClassifier/CommandProcessor.pm  view on Meta::CPAN

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
our $VERSION = 'v1.0.1';
 
my %commands;
 
#Description: Command processor constructor
#Parameters: (1) TrunkClassifier::CommandProcessor, (2) classification procedure ref, (3), split ref, (4) testset ref,
#            (5) class name variable ref, (6) output folder variable ref, (7) level variable ref, (8) prospect variable ref,
#            (9) supplementary file variable ref, (10) verbose variable ref, (11) useall variable ref, (12) input data file variable ref
#Return value: TrunkClassifier::CommandProcessor object
sub new($ $ $ $ $ $ $ $ $ $ $ $ $){
        my ($class, $classifyRef, $splitPercentRef, $testsetRef, $classnameRef, $outputRef, $levelRef, $prospectRef, $suppfileRef, $verboseRef, $useallRef, $datafileRef) = @_;
        %commands = (
                "-p"                    => {"numArgs" => 1, "validArgs" => 'loocv|split|dual', "var" => $classifyRef, "sub" => \&checkTestsetArg},
                "--procedure"   => {"numArgs" => 1, "validArgs" => 'loocv|split|dual', "var" => $classifyRef},
                "-e"            => {"numArgs" => 1, "validArgs" => '^[1-9][0-9]?$', "var" => $splitPercentRef},
                "--split"       => {"numArgs" => 1, "validArgs" => '^[1-9][0-9]?$', "var" => $splitPercentRef},
                "-t"                    => {"numArgs" => 1, "validArgs" => '.+', "var" => $testsetRef},
                "--testset"             => {"numArgs" => 1, "validArgs" => '.+', "var" => $testsetRef},
                "-c"                    => {"numArgs" => 1, "validArgs" => '.+', "var" => $classnameRef},
                "--classvar"    => {"numArgs" => 1, "validArgs" => '.+', "var" => $classnameRef},

lib/Algorithm/TrunkClassifier/CommandProcessor.pm  view on Meta::CPAN

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                }
        }
        if(!${$self->{"input"}}){
                die "Error: Input data file not supplied\n";
        }
}
 
#Description: Checks that the -t option is supplied if -c dual is used
#Parameters: (1) The -c argument, (2) command line arguments
#Return value: None
sub checkTestsetArg($ $){
        my ($argument, $comLineRef) = @_;
        if($argument eq "dual"){
                my $foundT = 0;
                foreach my $arg (@{$comLineRef}){
                        if($arg eq "-t"){
                                $foundT = 1;
                                last;
                        }
                }
                if(!$foundT){
                        die "Error: Command line option -t must be given when -c dual is used\n";
                }
        }
}
 
#Description: Command line help
#Parameters: None
#Return value: None
sub commandHelp(){
        my $doc = <<END;
Usage
    perl trunk_classifier.pl [Options] [File]
 
Options
        -p, --procedure     Classification procedure to use [loocv|split|dual]
        -e, --split         Percentage of samples to use as test set when using -p split
        -t, --testset       Dataset to classify when using -c dual
    -c, --classvar      Name of the classification variable to use
    -o, --output        Name of the output folder

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        }
         
        #Read input data file
        readExpData($self, $className, $prospect, $dataFileName, $datasetType);
        return $self;
}
 
#Description: Reads the supplementary file and writes new input data file with meta data
#Parameters: (1) supplementary file name, (2) input data file name, (3) dataset type
#Return value: New input data file name
sub readSuppFile($ $ $ $){
        my ($suppFileName, $dataFileName, $VERBOSE, $datasetType) = @_;
 
        #Read supplementary file
        open(SUPP_FILE, $suppFileName) or die "Error: Unable to open supplementary file '$suppFileName'\n";
        my @suppFile = <SUPP_FILE>;
        my $content = join("", @suppFile);
        $content =~ s/\r|\n\r|\r\n/\n/g;
        @suppFile = split(/\n+/, $content);
        close(SUPP_FILE);
        

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        }
        print(DATA_FILE $meta . join("", @dataFile));
        close(DATA_FILE);
        return $dataFileName;
}
 
#Description: Reads input data file with expression values and meta data
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) classification variable name
#            (3) prospect flag, (4) input data file name, (5) dataset type
#Return value: None
sub readExpData($ $ $ $ $){
        my ($self, $className, $prospect, $dataFileName, $datasetType) = @_;
        $className = uc($className);
         
        #Read input data file
        if(!open(DATA_FILE, $dataFileName)){
                die "Error: Unable to open $datasetType '$dataFileName'\n";
        }
        my @dataFile = <DATA_FILE>;
        close(DATA_FILE);
        my $content = join("", @dataFile);

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        $self->{"rownames"} = \@probeNames;
        $self->{"data_matrix"} = \@dataMatrix;
        $self->{"class_vector"} = \@incClassVector;
        $self->{"class_one"} = $classOne;
        $self->{"class_two"} = $classTwo;
}
 
#Description: Returns the number of samples in the dataset
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Number of elements in "colnames" attribute
sub getNumSamples($){
        my $self = shift(@_);
        return scalar(@{$self->{"colnames"}});
}
 
#Description: Returns the number of probes in the dataset
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Number of rows in "rownames" array
sub getNumProbes($){
        my $self = shift(@_);
        return scalar(@{$self->{"rownames"}});
}
 
#Description: Returns the row names of the DataWrapper object
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Array of row names
sub getProbeList($){
        my $self = shift(@_);
        return @{$self->{"rownames"}};
}
 
#Description: Returns a reference to the data matrix
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Array reference
sub getDataMatrix($){
        my $self = shift(@_);
        return $self->{"data_matrix"};
}
 
#Description: Returns a reference to the class vector
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Array reference
sub getClassVector($){
        my $self = shift(@_);
        return $self->{"class_vector"};
}
 
#Description: Returns the name of class one
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Class name
sub getClassOneName($){
        my $self = shift(@_);
        return $self->{"class_one"};
}
 
#Description: Returns the name of class two
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: Class name
sub getClassTwoName($){
        my $self = shift(@_);
        return $self->{"class_two"};
}
 
#Description: Returns a copy of a TrunkClassifier::DataWrapper object
#Parameters: (1) TrunkClassifier::DataWrapper object
#Return value: New TrunkClassifier::DataWrapper object
sub copy($){
        my $self = shift(@_);
        my $newWrapper = Algorithm::TrunkClassifier::DataWrapper->new();
        my @colnames = @{$self->{"colnames"}};
        my @rownames = @{$self->{"rownames"}};
        my @classVector = @{$self->{"class_vector"}};
        my @dataMatrix;
        foreach my $arrayRef (@{$self->{"data_matrix"}}){
                my @arrayCopy = @{$arrayRef};
                push(@dataMatrix, \@arrayCopy);
        }

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        $newWrapper->{"data_matrix"} = \@dataMatrix;
        $newWrapper->{"class_vector"} = \@classVector;
        $newWrapper->{"class_one"} = $self->{"class_one"};
        $newWrapper->{"class_two"} = $self->{"class_two"};
        return $newWrapper;
}
 
#Description: Removes one sample from a TrunkClassifier::DataWrapper object
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) index of sample to remove
#Return value: TrunkClassifier::DataWrapper object containing the removed sample
sub leaveOneOut($ $){
        my ($self, $index) = @_;
        my @colnames = ($self->{"colnames"}[$index]);
        my @rownames = @{$self->{"rownames"}};
        my @classVector = ($self->{"class_vector"}[$index]);
        my @matrixCol;
        for(my $row = 0; $row < scalar(@rownames); $row++){
                my @colArray = splice(@{$self->{"data_matrix"}[$row]}, $index, 1);
                push(@matrixCol, \@colArray);
        }
        splice(@{$self->{"colnames"}}, $index, 1);

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
        $newWrapper->{"data_matrix"} = \@matrixCol;
        $newWrapper->{"class_vector"} = \@classVector;
        $newWrapper->{"class_one"} = $self->{"class_one"};
        $newWrapper->{"class_two"} = $self->{"class_two"};
        return $newWrapper;
}
 
#Description: Removes a percentage of samples from a TrunkClassifier::DataWrapper object
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) split percent
#Return value: TrunkClassifier::DataWrapper object containing the removed samples
sub splitSamples($ $){
        my ($self, $split) = @_;
        my $totNumSamples = $self->getNumSamples();
        my $testSetSize = floor(($split / 100) * $totNumSamples);
        my @colnames;
        my @rownames = $self->getProbeList();
        my @classVector;
        my @matrix;
        for(my $row = 0; $row < $self->getNumProbes(); $row++){
                my @array;
                push(@matrix, \@array);

lib/Algorithm/TrunkClassifier/DataWrapper.pm  view on Meta::CPAN

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        $testSet->{"data_matrix"} = \@matrix;
        $testSet->{"class_vector"} = \@classVector;
        $testSet->{"class_one"} = $self->{"class_one"};
        $testSet->{"class_two"} = $self->{"class_two"};
        return $testSet;
}
 
#Description: Returns the number of samples in the specified class
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) class
#Return value: Array with column indexes
sub getClassSize($ $){
        my ($self, $class) = @_;
        my $classSize = 0;
        foreach my $sampleClass (@{$self->{"class_vector"}}){
                if($sampleClass eq $class){
                        $classSize++;
                }
        }
        return $classSize;
}
 
#Description: Returns the probe name of the probe row index given as argument
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) probe row index
#Return value: Probe name
sub getProbeName($ $){
        my ($self, $probeIndex) = @_;
        return ${$self->{"rownames"}}[$probeIndex];
}
 
#Description: Returns the probe row index of the probe name given as argument
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) probe name
#Return value: Probe row index
sub getProbeIndex($ $){
        my ($self, $probeName) = @_;
        for(my $probeIndex = 0; $probeIndex < $self->getNumProbes(); $probeIndex++){
                if($self->{"rownames"}[$probeIndex] eq $probeName){
                        return $probeIndex;
                }
        }
        return undef;
}
 
#Description: Returns the data matrix row corresponding to the argument index
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) row index
#Return value: Array
sub getMatrixRow($ $){
        my ($self, $rowIndex) = @_;
        return @{$self->{"data_matrix"}[$rowIndex]};
}
 
#Description: Returns the sample name corresponding to the sample index given
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) sample index
#Return value: Array reference
sub getSampleName($ $){
        my ($self, $sampleIndex) = @_;
        return $self->{"colnames"}[$sampleIndex];
}
 
#Description: Removes a probe name from row names and its row from the data matrix
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) probe index
#Return value: None
sub removeProbe($ $){
        my ($self, $probeIndex) = @_;
        splice(@{$self->{"rownames"}}, $probeIndex, 1);
        splice(@{$self->{"data_matrix"}}, $probeIndex, 1);
}
 
#Description: Removes a sample name from col names, its class from class vector, and its column from the data matrix
#Parameters: (1) TrunkClassifier::DataWrapper object, (2) sample index
#Return value: None
sub removeSample($ $){
        my ($self, $sampleIndex) = @_;
        splice(@{$self->{"colnames"}}, $sampleIndex, 1);
        splice(@{$self->{"class_vector"}}, $sampleIndex, 1);
        foreach my $rowref (@{$self->{"data_matrix"}}){
                splice(@{$rowref}, $sampleIndex, 1);
        }
}
 
return 1;

lib/Algorithm/TrunkClassifier/DecisionTrunk.pm  view on Meta::CPAN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
 
use strict;
 
our $VERSION = 'v1.0.1';
 
#Description: DecisionTrunk constructor
#Parameters: (1) TrunkClassifier::DecisionTrunk class
#Return value: TrunkClassifier::DecisionTrunk object
sub new($){
        my $class = shift();
        my @names;
        my @lower;
        my @higher;
        my @lowerClass;
        my @higherClass;
        my $self = {
                "level_name" => \@names,
                "lower_threshold" => \@lower,
                "higher_threshold" => \@higher,
                "lower_class" => \@lowerClass,
                "higher_class" => \@higherClass
        };
        bless($self, $class);
        return $self;
}
 
#Description: Adds a decision level to the trunk
#Parameters: (1) TrunkClassifier::DecisionTrunk object, (2) level name, (3) lower threshold, (4) higher threshold, (5) lower class, (6) higher class
#Return value: None
sub addLevel($ $ $ $ $ $){
        my ($self, $levelName, $lowerT, $higherT, $lowerC, $higherC) = @_;
        push(@{$self->{"level_name"}}, $levelName);
        push(@{$self->{"lower_threshold"}}, $lowerT);
        push(@{$self->{"higher_threshold"}}, $higherT);
        push(@{$self->{"lower_class"}}, $lowerC);
        push(@{$self->{"higher_class"}}, $higherC);
}
 
#Description: Classifies the test set based on the thresholds in the trunk
#Parameters: (1) TrunkClassifier::DecisionTrunk object, (2) TrunkClassifier::DataWrapper object, (3) class one name, (4) class two name
#                        (5) class report array reference, (6) verbose flag
#Return value: Ratio of correct to total classification performance
sub classify($ $ $ $ $ $){
        my ($self, $testSet, $ClassOne, $classTwo, $classReport, $VERBOSE) = @_;
        my $class;
        my @classification;
        my $ratioCorrect = 0;
        for(my $sampleIndex = 0; $sampleIndex < $testSet->getNumSamples(); $sampleIndex++){
                $class = "";
                for(my $levelIndex = 0; $levelIndex < scalar(@{$self->{"level_name"}}); $levelIndex++){
                        my $probeIndex = $testSet->getProbeIndex($self->{"level_name"}[$levelIndex]);
                        my @probeRow = $testSet->getMatrixRow($probeIndex);
                        if($probeRow[$sampleIndex] <= $self->{"lower_threshold"}[$levelIndex]){

lib/Algorithm/TrunkClassifier/DecisionTrunk.pm  view on Meta::CPAN

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
                        $ratioCorrect++;
                }
        }
        $ratioCorrect /= $testSet->getNumSamples();
        return $ratioCorrect;
}
 
#Description: Returns a text report of the trunk structure
#Parameters: (1) TrunkClassifier::DecisionTrunk object
#Return value: String containing the trunk structure
sub report($){
        my $self = shift();
        my $report = "";
        for(my $level = 0; $level < scalar(@{$self->{"level_name"}}); $level++){
                my $name = $self->{"level_name"}[$level];
                my $lowerT = $self->{"lower_threshold"}[$level];
                my $lowerC = $self->{"lower_class"}[$level];
                my $higherT = $self->{"higher_threshold"}[$level];
                my $higherC = $self->{"higher_class"}[$level];
                $report .= "\t$name\n<= $lowerT ($lowerC)\t\t> $higherT ($higherC)\n\n";
        }

lib/Algorithm/TrunkClassifier/Util.pm  view on Meta::CPAN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
use strict;
 
our $VERSION = 'v1.0.1';
 
#Description: Sorts two arrays in accending order based on values in the first
#Parameters: (1) Numerical array reference, (2) second array reference
#Return value: None
sub dataSort($ $){
        my ($numArrayRef, $secondArrayRef) = @_;
        my $limiter = 1;
        for(my $outer = 0; $outer < scalar(@{$numArrayRef}); $outer++){
                for(my $inner = 0; $inner < scalar(@{$numArrayRef}) - $limiter; $inner++){
                        if(${$numArrayRef}[$inner] > ${$numArrayRef}[$inner+1]){
                                my $buffer = ${$numArrayRef}[$inner];
                                ${$numArrayRef}[$inner] = ${$numArrayRef}[$inner+1];
                                ${$numArrayRef}[$inner+1] = $buffer;
                                $buffer = ${$secondArrayRef}[$inner];
                                ${$secondArrayRef}[$inner] = ${$secondArrayRef}[$inner+1];



( run in 0.973 second using v1.01-cache-2.11-cpan-87723dcf8b7 )