AI-MXNet
view release on metacpan or search on metacpan
t/test_io.t view on Meta::CPAN
use AI::MXNet qw(mx);
use Test::More tests => 31;
use AI::MXNet::TestUtils qw(same reldiff GetMNIST_ubyte GetCifar10);
use PDL;
use PDL::Types;
use PDL::NiceSlice;
$|++;
sub test_Cifar10Rec()
{
GetCifar10();
my $dataiter = mx->io->ImageRecordIter({
path_imgrec => "data/cifar/train.rec",
mean_img => "data/cifar/cifar10_mean.bin",
rand_crop => 0,
and_mirror => 0,
shuffle => 0,
data_shape => [3,28,28],
batch_size => 100,
t/test_io.t view on Meta::CPAN
{
$labelcount[int($nplabel->at($i)->asscalar)] += 1;
}
}
for my $i (0..9)
{
ok($labelcount[$i] == 5000);
}
}
sub test_NDArrayIter()
{
my $datas = ones(PDL::Type->new(6), 2, 2, 1000);
my $labels = ones(PDL::Type->new(6), 1, 1000);
for my $i (0..999)
{
$datas(:,:,$i) .= $i / 100;
$labels(:,$i) .= $i / 100;
}
my $dataiter = mx->io->NDArrayIter(
data => $datas,
t/test_io.t view on Meta::CPAN
{
ok($labelcount[$i] == 124);
}
else
{
ok($labelcount[$i] == 100);
}
}
}
sub test_MNISTIter()
{
GetMNIST_ubyte();
my $batch_size = 100;
my $train_dataiter = mx->io->MNISTIter({
image => "data/train-images-idx3-ubyte",
label => "data/train-labels-idx1-ubyte",
data_shape => [784],
batch_size => $batch_size,
shuffle => 1,
( run in 0.774 second using v1.01-cache-2.11-cpan-3b35f9de6a3 )