AI-NeuralNet-Hopfield

 view release on metacpan or  search on metacpan

Changes  view on Meta::CPAN

Revision history for AI-NeuralNet-Hopfield

0.01    Date/time
        First version, released on an unsuspecting world.

META.json  view on Meta::CPAN

{
   "abstract" : "A simple Hopfiled Network Implementation.",
   "author" : [
      "leprevost <leprevost@cpan.org>"
   ],
   "dynamic_config" : 1,
   "generated_by" : "ExtUtils::MakeMaker version 6.64, CPAN::Meta::Converter version 2.112621",
   "license" : [
      "perl_5"
   ],
   "meta-spec" : {
      "url" : "http://search.cpan.org/perldoc?CPAN::Meta::Spec",
      "version" : "2"
   },
   "name" : "AI-NeuralNet-Hopfield",
   "no_index" : {
      "directory" : [
         "t",
         "inc"
      ]
   },
   "prereqs" : {
      "build" : {
         "requires" : {
            "Test::More" : 0
         }
      },
      "configure" : {
         "requires" : {
            "ExtUtils::MakeMaker" : 0
         }
      },
      "runtime" : {
         "requires" : {
            "Math::SparseMatrix" : "0.03",
            "Moose" : "2.0604",
            "perl" : "5.006"
         }
      }
   },
   "release_status" : "stable",
   "version" : "0.1"
}

META.yml  view on Meta::CPAN

---
abstract: 'A simple Hopfiled Network Implementation.'
author:
  - 'leprevost <leprevost@cpan.org>'
build_requires:
  Test::More: 0
configure_requires:
  ExtUtils::MakeMaker: 0
dynamic_config: 1
generated_by: 'ExtUtils::MakeMaker version 6.64, CPAN::Meta::Converter version 2.112621'
license: perl
meta-spec:
  url: http://module-build.sourceforge.net/META-spec-v1.4.html
  version: 1.4
name: AI-NeuralNet-Hopfield
no_index:
  directory:
    - t
    - inc
requires:
  Math::SparseMatrix: 0.03
  Moose: 2.0604
  perl: 5.006
version: 0.1

Makefile.PL  view on Meta::CPAN

use 5.006;
use strict;
use warnings FATAL => 'all';
use ExtUtils::MakeMaker;

WriteMakefile(
    NAME             => 'AI::NeuralNet::Hopfield',
    AUTHOR           => q{leprevost <leprevost@cpan.org>},
    VERSION_FROM     => 'lib/AI/NeuralNet/Hopfield.pm',
    ABSTRACT_FROM    => 'lib/AI/NeuralNet/Hopfield.pm',
    LICENSE          => 'perl',
    PL_FILES         => {},
    MIN_PERL_VERSION => 5.006,
    CONFIGURE_REQUIRES => {
        'ExtUtils::MakeMaker' => 0,
    },
    BUILD_REQUIRES => {
        'Test::More' => 0,
    },
    PREREQ_PM => {
        'Moose' => 2.0604,
	    'Math::SparseMatrix' => 0.03,
    },
    dist  => { COMPRESS => 'gzip -9f', SUFFIX => 'gz', },
    clean => { FILES => 'AI-NeuralNet-Hopfield-*' },
);

README  view on Meta::CPAN

file from a module distribution so that people browsing the archive
can use it to get an idea of the module's uses. It is usually a good idea
to provide version information here so that people can decide whether
fixes for the module are worth downloading.


INSTALLATION

To install this module, run the following commands:

	perl Makefile.PL
	make
	make test
	make install

SUPPORT AND DOCUMENTATION

After installing, you can find documentation for this module with the
perldoc command.

    perldoc AI::NeuralNet::Hopfield

You can also look for information at:

    RT, CPAN's request tracker (report bugs here)
        http://rt.cpan.org/NoAuth/Bugs.html?Dist=AI-NeuralNet-Hopfield

    AnnoCPAN, Annotated CPAN documentation
        http://annocpan.org/dist/AI-NeuralNet-Hopfield

    CPAN Ratings
        http://cpanratings.perl.org/d/AI-NeuralNet-Hopfield

    Search CPAN
        http://search.cpan.org/dist/AI-NeuralNet-Hopfield/


LICENSE AND COPYRIGHT

Copyright (C) 2013 leprevost

This program is free software; you can redistribute it and/or modify it
under the terms of the the Artistic License (2.0). You may obtain a
copy of the full license at:

lib/AI/NeuralNet/Hopfield.pm  view on Meta::CPAN


our $VERSION = '0.1';

has 'matrix' => ( is => 'rw', isa => 'Math::SparseMatrix');

has 'matrix_rows'   => ( is => 'rw', isa => 'Int');

has 'matrix_cols'   => ( is => 'rw', isa => 'Int');

sub BUILD {
	my $self = shift;
	my $args = shift;
	my $matrix = Math::SparseMatrix->new($args->{row}, $args->{col});
	$self->matrix($matrix);	
	$self->matrix_rows($args->{row});
	$self->matrix_cols($args->{col});
}

sub train() {	
	my $self = shift;
	my @pattern = @_;	

	if ( ($#pattern + 1) != $self->matrix_rows) {
		die "Can't train a pattern of size " . ($#pattern + 1) . " on a hopfield network of size " , $self->matrix_rows;
	}
	
	my $m2 = &convert_array($self->matrix_rows, $self->matrix_cols, @pattern);

	my $m1 = &transpose($m2);

	my $m3 = &multiply($m1, $m2);

	my $identity = &identity($m3->{_rows});

	my $m4 = &subtract($m3, $identity);

	my $m5 = &add($self->matrix, $m4);
	
	$self->matrix($m5);	
}

sub evaluate() {
	my $self = shift;
	my @pattern = @_;

	my @output = ();

	my $input_matrix = &convert_array($self->matrix_rows, $self->matrix_cols, @pattern);

	for (my $col = 1; $col <= ($#pattern + 1); $col++) {
		
		my $column_matrix = &get_col($self, $col);
		
		my $transposed_column_matrix = &transpose($column_matrix);
		
		my $dot_product = &dot_product($input_matrix, $transposed_column_matrix);
		
		#say $dot_product;

		if ($dot_product > 0) {
			$output[$col - 1] = "true";
		} else {
			$output[$col - 1] = "false";
		}
	}
	return @output;
}

sub convert_array() {
	my $rows    = shift;
	my $cols 	= shift;
	my @pattern = @_;
	my $result  = Math::SparseMatrix->new(1, $cols);

	for (my $i = 0; $i < ($#pattern + 1); $i++) {
		if ($pattern[$i] =~ m/true/ig) {
			$result->set(1, ($i +1 ), 1);
		} else {
			$result->set(1, ($i + 1), -1);
		}
	}
	return $result;
}

sub transpose() {
	my $matrix  = shift;
	my $rows = $matrix->{_rows};
	my $cols = $matrix->{_cols};

	my $inverse = Math::SparseMatrix->new($cols, $rows);
		
	for (my $r = 1; $r <= $rows; $r++) {
		for (my $c = 1; $c <= $cols; $c++) {
			my $value = $matrix->get($r, $c);
			$inverse->set($c, $r, $value);
		}
	}
	return $inverse;
}

sub multiply() {
	my $matrix_a  = shift;
	my $matrix_b  = shift;

	my $a_rows = $matrix_a->{_rows};
	my $a_cols = $matrix_a->{_cols};

	my $b_rows = $matrix_b->{_rows};
	my $b_cols = $matrix_b->{_cols};

	my $result = Math::SparseMatrix->new($a_rows, $b_cols);

	if ($matrix_a->{_cols} != $matrix_b->{_rows}) {
		die "To use ordinary matrix multiplication the number of columns on the first matrix must mat the number of rows on the second";
	}

	for (my $result_row = 1; $result_row <= $a_rows; $result_row++) {
		for(my $result_col = 1; $result_col <= $b_cols; $result_col++) {
			my $value = 0;
			for (my $i = 1; $i <= $a_cols; $i++) {
				$value += ($matrix_a->get($result_row, $i)) * ($matrix_b->get($i, $result_col));
			}
			$result->set($result_row, $result_col, $value);
		}
	}
	return $result;
}

sub identity() {
	my $size = shift;

	if ($size < 1) {
		die "Identity matrix must be at least of size 1.";
	}
	
	my $result = Math::SparseMatrix->new ($size, $size);

	for (my $i = 1; $i <= $size; $i++) {
		$result->set($i, $i, 1);
	}
	return $result;
}

sub subtract() {
	my $matrix_a = shift;
	my $matrix_b = shift;

    my $a_rows = $matrix_a->{_rows};
    my $a_cols = $matrix_a->{_cols};

	my $b_rows = $matrix_b->{_rows};
	my $b_cols = $matrix_b->{_cols};

	if ($a_rows != $b_rows) {
		die "To subtract the matrixes they must have the same number of rows and columns.";
	}

	if ($a_cols != $b_cols) {
		die "To subtract the matrixes they must have the same number of rows and columns.  Matrix a has ";
	}

	my $result = Math::SparseMatrix->new($a_rows, $a_cols);

	for (my $result_row = 1; $result_row <= $a_rows; $result_row++) {
		for (my $result_col = 1; $result_col <= $a_cols; $result_col++) {
			my $value = ( $matrix_a->get($result_row, $result_col) ) - ( $matrix_b->get($result_row, $result_col));
			
			if ($value == 0) {
				$value += 2;
			}			
			$result->set($result_row, $result_col, $value);
		}
	}
	return $result;
}

sub add() {
	#weight matrix.
    my $matrix_a = shift;
	#identity matrix.
    my $matrix_b = shift;

	my $a_rows = $matrix_a->{_rows};
	my $a_cols = $matrix_a->{_cols};

	my $b_rows = $matrix_b->{_rows};
	my $b_cols = $matrix_b->{_cols};
	
	if ($a_rows != $b_rows) {
		die "To add the matrixes they must have the same number of rows and columns.";
	}

	if ($a_cols != $b_cols) {
		 die "To add the matrixes they must have the same number of rows and columns.";
	}

	my $result = Math::SparseMatrix->new($a_rows, $a_cols);

	for (my $result_row = 1; $result_row <= $a_rows; $result_row++) {
		for (my $result_col = 1; $result_col <= $a_cols; $result_col++) {
			my $value = $matrix_b->get($result_row, $result_col);			
			$result->set($result_row, $result_col, $matrix_a->get($result_row, $result_col) + $value  )
		}
	}
	return $result;
}

sub dot_product() {
	my $matrix_a = shift;
	my $matrix_b = shift;
	
	my $a_rows = $matrix_a->{_rows};
	my $a_cols = $matrix_a->{_cols};
	
	my $b_rows = $matrix_b->{_rows};
	my $b_cols = $matrix_b->{_cols};

	my @array_a = &packed_array($matrix_a);
	my @array_b = &packed_array($matrix_b);

	for (my $n = 0; $n <= $#array_b; $n++) {
		if ($array_b[$n] == 2) {
			$array_b[$n] = 0;
		}
	}
	
	if ($#array_a != $#array_b) {
		die "To take the dot product, both matrixes must be of the same length.";
	}

	my $result = 0;
	my $length = $#array_a + 1;

	for (my $i = 0; $i < $length; $i++) {
		$result += $array_a[$i] * $array_b[$i];
	}
	return $result;
}

sub packed_array() {
	my $matrix = shift;
	my @result = ();

	for (my $r = 1; $r <= $matrix->{_rows}; $r++) {
		for (my $c = 1; $c <= $matrix->{_cols}; $c++) {
			push(@result, $matrix->get($r, $c)); 
		}
	}
	return @result;
}

sub get_col() {
	my $self = shift;
	my $col  = shift;

	my $matrix = $self->matrix();
	
	my $matrix_rows = $self->matrix_rows();

	if ($col > $matrix_rows) {
		die "Can't get column";
	}

	my $new_matrix = Math::SparseMatrix->new($matrix_rows, 1);

	for (my $row = 1; $row <= $matrix_rows; $row++) {
		my $value = $matrix->get($row, $col);
		$new_matrix->set($row, 1, $value);
	}
	return $new_matrix;
}

sub print_matrix() {
    my $matrix  = shift;
    my $rs = $matrix->{_rows};
    my $cs = $matrix->{_cols};

	for (my $i = 1; $i <= $rs; $i++) {
		for (my $j = 1; $j <= $cs; $j++) {
			say "[$i,$j]" . $matrix->get($i, $j);
		}
	}
}

=head1 SYNOPSIS

This is a version of a Hopfield Network implemented in Perl. Hopfield networks are sometimes called associative networks since 
they associate a class pattern to each input pattern, they are tipically used for classification problems with binary pattern vectors.

=head1 SUBROUTINES/METHODS

=head2 New

In order to build new calssifiers, you have to pass to the constructor the number of rows and columns (neurons) for the matrix construction.

	my $hop = AI::NeuralNet::Hopfield->new(row => 4, col => 4);

=cut

=head2 Train

The training method configurates the network memory.

	my @input_1 = qw(true true false false);
	$hop->train(@input_1);

=cut

=head2 Evaluation

The evaluation method compares the new input with the information stored in the matrix memory.
The output is a new array with the boolean evaluation of each neuron.

	my @input_2 = qw(true true true false);
	my @result = $hop->evaluate(@input_2);

=cut


=head1 AUTHOR

Felipe da Veiga Leprevost, C<< <leprevost at cpan.org> >>

=head1 BUGS

Please report any bugs or feature requests to C<bug-ai-neuralnet-hopfield at rt.cpan.org>, or through
the web interface at L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=AI-NeuralNet-Hopfield>.  I will be notified, and then you'll
automatically be notified of progress on your bug as I make changes.


=head1 SUPPORT

You can find documentation for this module with the perldoc command.

    perldoc AI::NeuralNet::Hopfield


You can also look for information at:

=over 4

=item * RT: CPAN's request tracker (report bugs here)

L<http://rt.cpan.org/NoAuth/Bugs.html?Dist=AI-NeuralNet-Hopfield>

t/00-load.t  view on Meta::CPAN

#!perl -T
use 5.006;
use strict;
use warnings FATAL => 'all';
use Test::More;

plan tests => 2;

BEGIN {
    use_ok( 'AI::NeuralNet::Hopfield' ) || print "Bail out!\n";
	use_ok( 'Math::SparseMatrix' ) || print "Bail out\n";

}

diag( "Testing AI::NeuralNet::Hopfield $AI::NeuralNet::Hopfield::VERSION, Perl $], $^X" );

t/manifest.t  view on Meta::CPAN

#!perl -T
use 5.006;
use strict;
use warnings FATAL => 'all';
use Test::More;

unless ( $ENV{RELEASE_TESTING} ) {
    plan( skip_all => "Author tests not required for installation" );
}

my $min_tcm = 0.9;
eval "use Test::CheckManifest $min_tcm";
plan skip_all => "Test::CheckManifest $min_tcm required" if $@;

ok_manifest();



( run in 0.297 second using v1.01-cache-2.11-cpan-4d50c553e7e )