AI-FANN-Evolving
view release on metacpan or search on metacpan
lib/AI/FANN/Evolving/Experiment.pm view on Meta::CPAN
package AI::FANN::Evolving::Experiment;
use strict;
use warnings;
use AI::FANN ':all';
use AI::FANN::Evolving;
use File::Temp 'tempfile';
use Algorithm::Genetic::Diploid;
use base 'Algorithm::Genetic::Diploid::Experiment';
my $log = __PACKAGE__->logger;
=head1 NAME
AI::FANN::Evolving::Experiment - an experiment in evolving artificial intelligence
=head1 METHODS
=over
=item new
Constructor takes named arguments, sets default factory to L<AI::FANN::Evolving::Factory>
=cut
sub new { shift->SUPER::new( 'factory' => AI::FANN::Evolving::Factory->new, @_ ) }
=item workdir
Getter/Setter for the workdir where L<AI::FANN> artificial neural networks will be
written during the experiment. The files will be named after the ANN's error, which
needs to be minimized.
=cut
sub workdir {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->info("assigning new workdir $value");
$self->{'workdir'} = $value;
}
else {
$log->debug("retrieving workdir");
}
return $self->{'workdir'};
}
=item traindata
Getter/setter for the L<AI::FANN::TrainData> object.
=cut
sub traindata {
my $self = shift;
if ( @_ ) {
my $value = shift;
$log->info("assigning new traindata $value");
$self->{'traindata'} = $value;
}
else {
$log->debug("retrieving traindata");
}
return $self->{'traindata'};
}
=item run
Runs the experiment!
=cut
sub run {
my $self = shift;
my $log = $self->logger;
$log->info("going to run experiment");
my @results;
for my $i ( 1 .. $self->ngens ) {
# modify workdir
my $wd = $self->{'workdir'};
$wd =~ s/\d+$/$i/;
$self->{'workdir'} = $wd;
mkdir $wd;
my $optimum = $self->optimum($i);
$log->debug("optimum at generation $i is $optimum");
my ( $fittest, $fitness ) = $self->population->turnover($i,$self->env,$optimum);
push @results, [ $fittest, $fitness ];
}
my ( $fittest, $fitness ) = map { @{ $_ } } sort { $a->[1] <=> $b->[1] } @results;
return $fittest, $fitness;
}
=item optimum
The optimal fitness is zero error in the ANN's classification. This method returns
that value: 0.
=cut
sub optimum { 0 }
sub _sign {
my ( $obs, $exp ) = @_;
my $fitness = 0;
for my $i ( 0 .. $#{ $obs } ) {
$fitness += ( ( $obs->[$i] > 0 ) xor ( $exp->[$i] > 0 ) );
}
return $fitness / scalar(@{$obs});
}
sub _mse {
my ( $obs, $exp ) = @_;
my $fitness = 0;
for my $i ( 0 .. $#{ $obs } ) {
$fitness += ( ( (1+$obs->[$i]) - (1+$exp->[$i]) ) ** 2 );
}
return $fitness / scalar(@{$obs});
}
=item error_func
Returns a function to compute the error. Given an argument, the following can happen:
'sign' => error is the average number of times observed and expected have different signs
'mse' => error is the mean squared difference between observed and expected
CODE => error function is the provided code reference
=back
=cut
sub error_func {
my $self = shift;
# process the argument
if ( @_ ) {
my $arg = shift;
if ( ref $arg eq 'CODE' ) {
$self->{'error_func'} = $arg;
$log->info("using custom error function");
}
elsif ( $arg eq 'sign' ) {
$self->{'error_func'} = \&_sign;
$log->info("using sign test error function");
}
elsif ( $arg eq 'mse' ) {
$self->{'error_func'} = \&_mse;
$log->info("using MSE error function");
}
else {
$log->warn("don't understand error func '$arg'");
}
}
# map the constructor-supplied argument
if ( $self->{'error_func'} and $self->{'error_func'} eq 'sign' ) {
$self->{'error_func'} = \&_sign;
$log->info("using error function 'sign'");
}
elsif ( $self->{'error_func'} and $self->{'error_func'} eq 'mse' ) {
$self->{'error_func'} = \&_mse;
$log->info("using error function 'mse'");
}
return $self->{'error_func'} || \&_mse;
}
1;
( run in 0.332 second using v1.01-cache-2.11-cpan-4d50c553e7e )